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Preface

In the last decade, energy markets have developed substantially due to the growing
activity of financial investors. One consequence of this massive presence of
investors is a stronger link between the hitherto segmented energy and financial
markets. “The Interrelationship Between Financial and Energy Markets” is the title
of this book, and it addresses some of the recent developments between financial
and energy markets. It aims to further the understanding of the rich interplay
between financial and energy markets by presenting several empirical studies that
illustrate and discuss some of the main issues on this agenda.

Postgraduate students, researchers, and practitioners with a solid background in
economic and finance theory are the target audience. Many chapters contain a
strong component of quantitative methods applied to energy finance along with an
up-to-date survey of the literature, thus allowing the reader to get up to speed on
these topics.

A number of issues were omitted, including the regulatory aspects of the
European energy markets and financial aspects on renewable and green energy, so
as to avoid an overlap with the contents of other books by Springer, e.g. Financial
Aspects of Energy and the Handbook of Natural Resources and Energy Economics.

As a whole, the 12 chapters of “The Interrelationship Between Financial and
Energy Markets” aim to provide an overview of important aspects of the oil
industry, the impact of oil shocks, electricity markets, and the analytical and
quantitative tools applicable to energy finance.

This book is the result of input from many people. In particular, we would like to
thank the authors of the chapters, as well as the reviewers for their helpful
comments.
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Introduction

Before the early 2000s, commodities and energy markets were partially segmented
from outside financial markets and even from each other. During the 2000s, a
series of academic articles publicized negative correlations between commodities
and stock market and bond indexes, and the positive correlation with inflation. In
investment language this means that investments in commodities, and in particular
energy, provide diversification benefits as well as inflation hedging. These
attractive features captured the attention of financial investors as they were coming
to terms with the burst of the dot com bubble. The inflation hedging property was
also welcomed by long-term investors for whom the inflation risk is a major
concern.

World dependence on energy has grown steadily in the last decades. Figure 1
depicts the world consumption of primary energy and the striking increase is
evident. Between 1965 and 2012, the consumption tripled. The steep upward trend
of consumption in China and other emerging countries is also clear to see. Overall,
the worldwide consumption of energy is dominated by China, the US, and the
European Union, and together they accounted for 53 % of the world primary
energy consumption in 2012.

According to the Energy Information Administration’s International Energy
Outlook 2013, world energy consumption will rise to 56 % in the next three
decades driven by growth in developing countries such as China and India. Their
projections also indicate that demand in China is expected to double that of the US
by 2040. Therefore, there is a huge potential for growth in the energy markets.

The deregulation of the energy sector is another factor that has further boosted
the links between markets. The 1980s marked the start of a wave of deregulation of
several state-owned industries, including electricity, in many countries like the US
and the UK. The deregulation process in the energy sector aimed to create a new
institutional framework that benefited consumers and fostered welfare. The
regulations were changed in order to attract a larger number of market participants
to competitive sectors given the well-known difficulty in challenging incumbents.
Prices were expected to fluctuate more as they were no longer being curbed, and
this brought new risks for market participants. In addition, the Commodity Futures
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Modernization Act of 2000 ensured the deregulation of financial products known
as over-the-counter derivatives on commodities.

The necessary conditions were in place: a sector with overwhelming growth
(that is likely to continue) and many investment opportunities, and investors eager
to find new asset classes and who have acknowledged the energy sector’s growth
potential. The trigger came with the wave of deregulation in the energy markets,
which attracted a large number of new investors and strengthened the link between
financial and energy markets.

This increased link between financial markets and energy has taken several
forms:

The development of energy markets with a growing number of participants, and
energy-based products are now being traded like financial assets. New spot and
derivative energy markets have emerged and financial exchanges have extended
business lines to energy products. Figure 2 shows the average open interest per
year of futures contracts traded on the NYMEX since 1995 on crude oil and natural
gas. The growing number of open interest in futures contracts clearly demonstrates
the financial activity in the energy sector.

The new framework has some interesting implications. First, the interaction
between supply and demand becomes more important for pricing. Second, markets
share common investors, which leads to more commonalities between oil and
stock markets; for instance, spillovers from one market to another are likely to
become acute. Third, given that demand for energy is quite inelastic and supply
tends to be rigid, price volatility is likely to increase, or prices will at least show
spikes. Figures 3, 4 and 5 show the price of crude oil, natural gas and electricity;
the three lines represent the maximum, average, and minimum price by year and
they clearly show that the price spikes.

Fig. 1 World consumption of energy. Data source BP statistics. Primary energy comprises
commercially traded fuels including modern renewables used to generate electricity
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Funding of Energy Projects

Soaring demand pushed prices to new highs, triggering the development of new
energy projects that had not previously been financially worthwhile. Figure 3
shows the sharp rise in the price of crude oil, interrupted briefly by the 2008 crisis
before bouncing back. A side effect of the high cost of oil is that it stimulated

Fig. 2 Open interest: Yearly average-futures contract on the NYMEX. Data source Commitments
of traders data from the US Commodity Futures Trading Commission

Fig. 3 Price of West Texas intermediate crude oil- ($/barrel). Data source Datastream
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investment in the production of “more expensive” oil like bearing shale
formations, as well as of other sources of renewable energy.

The energy sector is characterized by large upfront investments in both research
and technology (R&D) and also in infrastructures. Research and technology in
technology is important because it enables technological advances that raise
efficiency. For instance, technological developments in the electricity sector, e.g.,
in smart grids, storage capacity, and the integration of national or intra-national

Fig. 4 Price of natural gas-Henry hub ($/MMBTU). Data source Datastream

Fig. 5 DJPJM electricity—firm on PK—price index. Data source Datastream
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systems will increase efficiency and lead to substantial savings in costs. In the
same way, technological development results in more efficiency due to cuts in
costs when exploring renewable sources.

As a result of the growing consumption of energy, energy firms felt the need to
make new investments, and these require funding. Huge amounts of money have
been put into energy companies and financing energy projects. For instance,
projects to increase the transmission capacity of electricity in developing markets
due to industrialization and the growth in urbanization, and to integrate the
different national electric grids.

Figure 6 shows the market value of indexes of U.S. oil and gas companies that
go from exploration and production, integrated firms, to electricity and oil
equipment and services and distribution. We also present the index Standard and
Poor’s 500 for comparison. All indexes are normalized to 100 for the first year to
facilitate comparison. We can see the marked growth of exploration and
production companies as well as oil equipment and services and distribution in
relation to those of S&P 500.

Idiosyncrasies of Energy Markets

Despite greater integration with financial markets, the specificities of the energy
markets are such that it is natural to analyze them separately from other
commodities. An important distinctive feature of energy is that it is costly to
transport and difficult to store (the extreme case is electricity), leading to rigidity
on the supply side.

Fig. 6 US firms’ market capitalization. Data source Datastream. All data series are standardized
to the value 100 in 1973 to better allow comparisons
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The inelasticity of demand and the rigid supply mean that any change in these
two economic forces has a dramatic effect on prices, making energy prices quite
volatile. Thus, modeling and forecasting prices and their volatility is important, as
is an understanding of the impact of energy volatility on economic and financial
variables such as stock market returns and Gross Domestic Product.

The Structure of the Book in Parts and Chapters

This book is divided into three parts. The first deals with the impact of oil price
risk in firms, the second with the impact of oil shocks, and the third discusses
electricity market issues. The recurrent theme of the book is the financial
implications of energy prices and the importance of price risk from the perspective
of both investors and firm managers. Special attention is given to econometric
techniques that shed light on the dynamics of prices whether from spot or
derivative markets, and forecasting the price of energy. The development of
electricity markets is no less important, namely the design of markets, pricing, and
the interaction of spot and derivatives prices.

Part I, devoted to the Oil Industry, consists of two chapters. The first section
looks at the relation between the price of oil and the market value of companies.
Oil has a central role in economies since it is a major input for most industries. The
chapters look at the two groups of companies that are most directly dependent on
oil: oil companies and airline companies.

Stockholders of energy companies need to know the risks facing these
companies. The first chapter by Sofia Ramos, Helena Veiga, and Chi-Wei Wang,
“Risk Factors in the Oil Industry: An Upstream and Downstream Analysis”, looks
at the drivers of the market value of oil firms upstream and downstream. Although
there is of course a relation between the price of oil and the market value of the
listed oil companies, oil is simultaneously the main output of the upstream industry
and an input for the downstream segment. Thus, the chapter analyzes whether the
impact is the same along the value chain of the oil industry. The results highlight
the weak relationship with stock market returns, which means the industry is not
pro-cyclical either upstream or downstream. However, complementary industry
activities related with oil exploration are pro-cyclical industries. Second, the
market returns of the industry show sensitivity to oil returns, and range from
1.45 % (downstream) to 4.19 % (machinery and equipment). This suggests that
when the price of oil increases, this is likely to trigger higher oil production, and
boost business activity in complementary industry segments. The oil industry is
also shown to have some market power.

Oil price risk is a major issue in commercial airlines. The second chapter by
Paul A. Laux, He Yan, and Chi Zhang, “Cost, Risk-Taking, and Value in the
Airline Industry”, analyzes the cost function of the commercial airline industry and
analyzes whether it is worth hedging the oil price. The study develops empirical
measurements of the cost functions of airline firms during the 1998–2009 period,
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using detailed data from jet fuel consumption and prices. The authors go on to
analyze the potential value of hedging costs, and emphasize that the key to
valuable risk management is the correlation between the risk source and the firm’s
investment range of opportunities. A positive correlation between them implies
that hedging can be beneficial. The study finds that although airlines do hedge
significantly, it is neither universal within the industry nor do any firms hedge
fully. Further, the intensity of hedging varies substantially over time for many
airlines. The authors find some explanation for this; the results show that unhedged
fuel cost functions are concave on oil prices, which implies that not hedging the
risk is beneficial to the value of airlines. Specifically, on average fuel costs tend
toward concavity, suggesting that cost savings when oil prices drop exceed cost
increases when oil prices spike. Thus airlines’ cost structures are such that the gain
from hedging is limited.

As oil is a critical input for almost all economic activities, oil price shocks slow
economic activity. Part II, which consists of five chapters, describes several aspects
related with The Impact of Oil Shocks. This is one of the most active areas of
research in recent years, so here we find very heterogeneous chapters going from
surveys on the economic effects of oil market developments to more technical
chapters that evaluate econometric models and techniques for oil price forecasting
and transmission of oil shocks and volatility to equity markets.

Chapter 3 by Ulrich Oberndorfer, “Oil Prices, Volatility, and Shocks: A Survey”,
summarizes the literature on the economic effects of oil market developments and
analyzes the link between the oil market and economic outcomes. In particular, the
chapter clarifies common definitions in oil markets such as price shock and price
volatility measures, the theoretical and empirical findings on the impacts of oil on
the macroeconomy, and the role played by the oil price in financial markets. The
effects of oil on the economy are described mainly through two traditional mech-
anisms: the supply side and the income transfer mechanisms. In the first, the
increase in oil price leads to a scarcity of this basic input, thus causing a decrease in
output, real wage growth, and a rise in unemployment. The decrease in real wages
also has additional negative effects like the increase in borrowing, interest rates, and
inflation. The latter mechanism explains the effects of an increase in oil prices as a
shift in purchasing power from oil-importing countries to oil-exporting countries.

Regarding the impact of oil price rises on financial markets, firms in the energy
business often profit from increases in oil price because their profits and
consequently their stock prices go up. The opposite occurs for firms in which the
main input is oil. Nevertheless, it is oil price volatility that registers the biggest
impact on financial markets due to the fact that it triggers higher expenditure and
therefore induces hedging costs, decreases the production of the respective
commodity, and impacts on the discounted expected future cash flows of firms,
thus affecting their stock prices.

In the last decade, the literature on the nature of oil price shocks and their
effects on equity markets has led to both greater understanding and new techniques
to quantify these effects. Chapter 4 by Rania Jammazi, “Oil Shock Transmission to
Stock Market Returns: Wavelet-Multivariate Markov Switching GARCH
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Approach” addresses this topic and focuses on the transmission of oil shocks to
stock markets using recent methodological developments that involve estimating a
multivariate Markov switching GARCH to series of wavelet detail coefficients of
stock market and oil returns. This methodology allows us to analyze the magnitude
and the time-varying nature of the transmission. More specifically, it addresses two
issues on the effect of crude oil shocks on stock market returns: the existence (or
the inexistence) of oil shocks and/or oil volatility transmission to equity markets
and, under the hypothesis of common increased volatility, whether this trans-
mission is boosted with the international crisis. The main findings of this chapter
are: the intensity of oil shocks is time-varying, there is a correlation between high
oil price volatility and stock returns volatility, and international recessions and the
responses of stock markets to the oil supply shocks vary in accordance with the
geographical area. Therefore, for oil-importing countries, oil price shocks coming
from non-European countries have a stronger effect than oil price shocks coming
from European or Eurasian countries.

Oil price volatility has a detrimental effect on some important economic sectors
such as automobile, chemical, oil and natural gas, and utilities. Some companies
buy credit default swaps (CDS), namely financial products that provide protection
from credit events, to insulate themselves from events that increase oil price
volatility. Chapter 5 by Shawkat Hammoudeh and Ramazan Sari, “Forcing
Variables in the Dynamics of Risk Spillovers in Oil-Related CDS Sectors, Equity,
Bond and Oil Markets and Volatility Market Risks”, examines migration, i.e., the
deterioration in credit quality, and cascading of CDS risks, i.e., the spillover effects
for the four oil related sectors.

The commodity market has seen an upward trend in financialization, i.e., a
growing presence of financial investors without a commercial position on the
commodity. There has been heated debate as to whether the presence of such
investors, commonly dubbed financial speculators, disturbs and manipulates the
price of commodities, including oil. Due to the physical limitations of investing in
oil, the futures market has been the preferred venue for these investments. Giulio
Cifarelli and Giovanna Paladino analyze the dynamic relation between spot and
futures prices in Chapter 6 “Oil Futures Markets: A Dynamic Model of Hedging
and Speculation”. The authors present a model where spot and futures prices
interact due to the presence of hedgers and speculators. The authors distinguish the
interaction in two volatility regimes; they find evidence of the different behavior of
hedgers and speculators and in particular that hedgers change their attitude in
periods of high volatility when uncertainty is high. Overall, the authors conclude
that the interaction between hedgers and speculators across volatility regimes has
some impact on futures pricing.

Chapter 7 by Andrea Bastianin, Matteo Manera, Anil Markandya and Elisa
Scarpa, “Evaluating the Empirical Performance of Alternative Econometric
Models for Oil Price Forecasting”, reviews the empirical literature on the alter-
native econometric specifications to capture the dynamics of oil prices. The
empirical literature is far from reaching consensus about the appropriate model to
be used in forecasting since conclusions change in line with the specifications,
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time periods, and frequencies. This is a very useful chapter for researchers or
postdoc students since it provides an overview of the topic by exhaustively testing
and evaluating the forecasting performance of several econometric specifications
found in the literature: some related with the relationship between spot and futures
prices that the authors call “financial” models and others involving economic
fundamentals known as “structural” models, and a new class of models that
combines “financial” and “structural” models. The forecasting performance of the
various models is done for different frequencies of the data and the main finding is
that forecasting in “financial” models and time series models performs better than
“structural” and “mixed” models.

The last part of the book addresses the financial issues in Electricity Markets
such as market design and price dynamics.

Determining the social cost of carbon emissions and incorporating the cost of
polluting activities is an important economic issue. Over the last decade, a
European carbon market has been established where the price of carbon emission
allowances is determined by balancing supply and demand and these are traded in
exchanges across Europe. Chapter 8 “Commodity Price Interaction: Co2
Allowances, Fuel Sources and Electricity”, by Mara Madaleno, Carlos Pinho
and Cláudia Ribeiro, examines interactions between carbon, electricity, and fossil
fuel (coal, oil and natural gas) returns, analyzing the impacts of emissions trading
using data from the German and French markets. Results reveal that the price does
not depend entirely on the energy mix of the country under analysis. Market power
influences the correct transfer of prices, i.e., limiting cost increases but less carbon
coercion in the European Energy Exchange (EEX) and innovations in carbon are
not strongly reflected in electricity prices.

Although the electricity sector was state-regulated in many countries, there has
been a wave of deregulation since the 1980s notably in developed countries.
Chapter 9 “An Overview of Electricity Price Regimes in the U.S. Wholesale
Markets”, by José G. Dias and Sofia Ramos—describes the case of the deregu-
lation of the United States wholesale electricity markets and studies the price
dynamics in several regional markets. The case for deregulation was supported by
the arguments that users would benefit from more competition between market
participants, i.e., the classical economic argument that the larger the competition,
the lower the prices would apply to electricity markets. However, to establish a
competitive wholesale electricity market is a challenge for many reasons: the
power of incumbent firms and the large upfront investments necessary to enter the
market. Moreover, the inherent features of the electricity business hinder com-
petition; first, although electricity can be generated by multiple operators, trans-
mission tends to be a natural monopoly because duplicating the grid is not
efficient. The dynamics of electricity prices are therefore a consequence of the
regulation of the market. As prices are no longer curbed by regulators, and fluc-
tuate according to supply and demand, prices spike with demand shocks because
the supply is rigid. The chapter shows that the use of multi-regime switching
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models is suitable for representing the price dynamics of electricity prices because
it can capture the various volatility regimes that characterize electricity in an
endogenous way. Moreover, it compares the price dynamics in the different
geographical markets of the US. The study shows that despite geographic distance,
there is slight synchronization of regimes in a high and a low volatility regime.

The liberalization of the power markets in Europe and worldwide led to markets
for the purchase of electrical energy that functioned well in many European
countries. Markets in Europe work with a day-ahead spot market and financial
contracts for future delivery of electricity. Chapter 10 by Fred Espen Benth and
Maren Diane Schmeck, “Pricing Futures and Options in Electricity Markets”,
studies the relation between spot, futures, and options in electricity markets by
pricing them simultaneously. The authors find evidence that supports the existence
of different risk-neutral pricing measures: one for options and another for deriving
futures prices from the spot dynamics.

Chapter 11 “Switching from Feed-in Tariffs to a Tradable Green Certificate
Market” by Aitor Ciarreta, Maria Paz Espinosa, and Cristina Pizarro-Irizar dis-
cusses the creation of tradable green certificate markets focusing on the role of
risk-sharing in markets. Electricity generated from renewable sources leads to high
production costs, which often makes this energy unprofitable in a free market
framework. Nevertheless, green energy brings benefits to the economy and society
since it not only seeks to improve market efficiency and internalize external costs
but also brings new research and technologies for future commercialization. Clean
energy has been promoted in some countries through a feed-on tariff or feed-in
premium. These systems allow the producers to sell their entire production at a
fixed guaranteed price that is settled above the market price for electricity. The
consumers assume all the risk. A different way of promoting clean energy is to
create tradable green certificate markets. This system is distinct from the previous
one because it separates common electricity from clean electricity, which is treated
as a new product in this new market.

The electricity distribution sector has recently undergone several regulatory
reforms aimed to improve its efficiency; moreover, concepts and estimated
measures of scale, scope, and cost efficiency have become very important to
compare firms within the sector. Chapter 12 by Per J. Agrell, Mehdi Farsi,
Massimo Filippini and Martin Koller, “Unobserved Heterogeneous Effects in the
Cost Efficiency Analysis of Electricity Distribution Systems”, focuses on the cost
efficiency of electricity distribution systems and considers the impact of unob-
served heterogeneity on these estimates. The authors use heterogeneity to mean the
characteristics inherent to each firm arising from the fact the firms operate in
different regions with different environmental and network characteristics. This
chapter uses an alternative strategy to distinguish cost efficiency from unobserved
heterogeneity by decomposing the benchmark process in two steps. They start by
identifying similar companies and including them in the same class in order to
reduce the unobserved heterogeneity, and then apply the best methodology in each

xx Introduction

http://dx.doi.org/10.1007/978-3-642-55382-0_10
http://dx.doi.org/10.1007/978-3-642-55382-0_11
http://dx.doi.org/10.1007/978-3-642-55382-0_11
http://dx.doi.org/10.1007/978-3-642-55382-0_12
http://dx.doi.org/10.1007/978-3-642-55382-0_12


class. This two-step procedure is shown to provide more realistic efficiency esti-
mates than the conventional one-step analysis because it reduces the unobserved
heterogeneity within classes and, consequently, the unexplained variance identi-
fied previously as inefficiency. These results suggest that cross-sectional or pooled
models might underestimate the real cost efficiency if they do not account for
unobserved heterogeneity.
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Risk Factors in the Oil Industry:
An Upstream and Downstream Analysis

Sofia B. Ramos, Helena Veiga and Chih-Wei Wang

Abstract In this paper we examine the drivers of stock market value in the
upstream (producers) and downstream segments (petroleum refiners) of the oil
industry. Using a sample of U.S. firms we find that stock returns of upstream and
downstream firms follow stock market and oil price returns. Moreover, the
upstream firm stock returns are sensitive to changes in the Canadian dollar, an
important oil trade partner of the U.S., to natural gas returns and its volatility, but
not to oil return volatility. Both the upstream and downstream segments present
asymmetric changes regarding oil return changes. Stock returns of the oil industry
respond asymmetrically to oil returns, i.e., positive oil returns had a greater impact
than oil price drops in the period 1998–2004. Before 1997 we do not find any
asymmetric effects, and after 2004, they are only statistically significant in the
upstream segment. Overall, the evidence for asymmetric effects is more consistent
across measures and time in the upstream than in the downstream segment.

Keywords Asymmetric effects � Oil and natural gas companies � Oil prices � Oil
volatility

The authors acknowledge financial support from Fundação para a Ciência e Tecnologia PEst-
OE/EGE/UI0315/2011, from the Spanish Ministry of Education and Science, research projects
ECO2012-32401 and MTM2010-17323.

S.B. Ramos (&)
Business Research Center/UNIDE, Instituto Universitario de Lisboa (ISCTE-IUL), Avenida
Das Forças Armadas, 1600-083 Lisbon, Portugal
e-mail: sofia.ramos@iscte.pt

H. Veiga
Department of Statistics and Instituto Flores de Lemus, Universidad Carlos III de Madrid,
C/Madrid 126, 28903 Getafe, Spain. BRU/UNIDE, Avenida Das Forças Armadas, 1600-083
Lisbon, Portugal

C.-W. Wang
Chinese Academy of Finance and Development, Central University of Finance
and Economics, 39 South College Road, Haidian District, Beijing 100081, China

© Springer-Verlag Berlin Heidelberg 2014
S. Ramos and H. Veiga (eds.), The Interrelationship Between Financial and Energy
Markets, Lecture Notes in Energy 54, DOI 10.1007/978-3-642-55382-0_1

3



1 Introduction

Several studies have documented a relation between stock returns of the oil and gas
industry and risk factors other than stock market returns (see Boyer and Filion
2007; El-Sharif et al. 2005; Nandha and Faff 2008; Ramos and Veiga 2011;
Sadorsky 1999, 2001). A common finding emerging from these studies is that
industry stock returns follow oil returns, the pivot commodity of this industry.
Moreover, Ramos and Veiga (2011) find evidence of the perception of a pass-
through effect of oil price hikes, i.e., industry returns increase more with oil price
hikes than proportionally decrease with oil price drops, which is not found in other
commodity dependent industries. In the discounted cash flow framework, this can
be due to the fact that the demand is not sufficiently depressed by price hikes or the
market power of firms in this industry is large.

Although previous studies have investigated risk factors and asymmetric effects
of oil returns for oil and gas industry, they have not determined whether impacts are
different for upstream (producers) and for downstream (petroleum refiners) seg-
ments. Oil is simultaneously the main output of the upstream industry and an input
for the downstream segment. Thus, depending on the price elasticity of oil, oil price
hikes may generate higher revenues for the upstream segment and an increase of
input cost followed by a reduction of supply in the petroleum refinery (Lee and Ni
2002). Therefore, the impact of oil price changes might not be the same along the
oil activity value chain.

This paper investigates whether risk factors are different along the oil and gas
industry chain. As far as we know, this is the first work analyzing a panel of 260 U.S.
companies engaged in operations in the oil and natural gas industry in the period
1988–2010, covering all the value chain from upstream to downstream activities:
production, drilling and other related services, refining and even field machinery and
equipment.

We find differences in the sensitivity to factors of the industry segments. Oil
producers and petroleum refiners are not very sensitive to stock market variations
and their stock market betas range between 0.5 and 0.6. On the other hand, the other
industry segments, such as complementary segments of services, equipment and
machinery are more market sensitive and have market betas close to one.

Oil producers show sensitivity to exchange rate changes, suggesting that cash
flows are likely to be affected by revenues from foreign sales.

Firm returns are sensitive to oil price changes. Interestingly, oil shocks affect
more complementary industries than upstream and downstream segments. Oil price
hikes have an impact ranging from 1.45 (downstream) to 4.19 % (machinery and
equipment) depending on the industry. This might suggest that when the oil price
increases, oil producers might increase their production of oil, fostering business
activity in complementary industry segments.

Previous work has not analyzed the effects of natural gas price changes and its
volatility on industry returns. We find that in addition to oil sensitivity, firm value is
also sensitive to natural gas price changes and its volatility. For instance, one
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standard deviation shock has an impact on stock returns of oil and gas producers of
2.34 %.

To gather evidence on the perception of a pass-through effect, we analyze
whether industry returns change asymmetrically with oil and natural gas price
changes. We find that industry returns for oil and gas producers (upstream) and
petroleum refiners (downstream) change asymmetrically with oil price changes, but
not for services, equipment and machinery. Industry returns also follow asym-
metrically natural gas returns but only in the upstream segment.

An analysis through time shows that there were no asymmetric effects before
1998, and that they prevail in the whole industry in the period 1998–2004; after
that, we only find a weak presence for the upstream segment.

Our work provides new contributions for the literature. We have documented
differences on the risk factors along the value chain of the oil and gas industry. The
analysis confirms that at the upstream, firm value increases proportionally more
with oil price hikes than with oil price drops. Our results are of interest for corporate
managers and investors that care about the oil industry’s exposure to interest rates,
exchange rates and oil and natural gas prices.

The structure of the paper is as follows. Section 2 reviews the literature. Sec-
tion 3 presents the data. Section 4 describes the methodology and details about the
estimation. Section 5 presents the estimation results for portfolios. Section 6 checks
if the asymmetric effects are time-varying. Section 7 provides a series of robustness
tests for the analysis, and Sect. 8 concludes.

2 Review of Literature

Research work has analyzed the impact of oil price changes on stock markets but
with conflicting results. Early works were not supportive of oil as a significant
factor in financial markets. Huang et al. (1996), Chen et al. (1986) and Ferson and
Harvey (1994) find that oil futures returns do not have much impact on stock
market indices and that there is no reward for oil price risk in stock markets. Jones
and Kaul (1996), however, provide evidence that aggregate stock market returns in
the U.S., Canada, Japan and the U.K. are negatively sensitive to the adverse impact
of oil price shocks on their economies. More recently, Driesprong et al. (2008) find
some predictive power in oil returns.

A strand of literature has also examined whether oil asymmetric effects found in
the macro literature pertain to stock market returns. Cong et al. (2008), Nandha and
Faff (2008) and Park and Ratti (2008) do not find evidence of such effects, while
Basher and Sadorsky (2006) find evidence of oil asymmetric effects, and Ramos
and Veiga (2013) find that they exist both for oil-importing and oil-exporting
countries, but run in opposite directions. Oil price rises have a negative effect on
stock markets of oil-importing countries, while the impact is positive for stock
markets of oil-exporting countries.
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The literature has also investigated whether oil return volatility impacts stock
returns. Bernanke (1983) argues that companies should postpone irreversible
investment expenditures when they experience increased uncertainty about the
future oil price. Thus, the falling energy prices’ tendency to stimulate output might
be dampened if firms are uncertain whether the fall in energy prices is permanent or
transitory.

With the growing profitability of oil companies, a number of works have looked
for drivers of oil and natural gas industry returns, such as the market index, interest
and currency rates and naturally oil prices. The evidence has unanimously showed
that stock returns of oil and natural gas companies follow market and oil returns,
but other variables such as interest and currency rates have different results
depending on the sample.1

Scholtens and Wang (2008) do not find differences between oil and gas pro-
ducers (upstream) and the equipment, services and distribution companies (down-
stream). Elyasiani et al. (2011) study several sector returns in the U.S. that are oil
related. They find that the oil-user industries (building, chemical, plastic and rubber,
metal, industrial machinery, transport equipment, and air transportation) are more
likely to be affected by changes in the volatility of oil returns, while the level of oil-
futures return exerts a greater impact on the oil-substitute (coal and electric and gas
services) and oil-related (oil and gas extraction and petroleum refinery) industries.
The above studies have not, however, analyzed the presence of asymmetric effects.

3 Data

Our work aims to shed light on the understanding of the impact of oil price changes
in the upstream and downstream segments of the oil industry.2

3.1 Oil and Gas Companies

Our data sample is an unbalanced panel of 260 oil and gas companies drawn from
CRSP and Compustat. The sample period runs from January 1988 to December
2010 and we use adjusted returns at end of the month.

1 See Faff and Brailsford (1999) for evidence on Australian oil and gas industry equity returns,
Sadorsky (2001) and Boyer and Filion (2007) for Canada, El-Sharif et al. (2005) for U.K., Al-
Mudaf and Goodwin (1993) and Hammoudeh et al. (2004) for the U.S., Park and Ratti (2008) and
Oberndorfer (2009) for Europe and Ramos and Veiga (2011) for evidence on a sample of 34
countries. Ramos and Veiga (2011) also find that the oil and gas sector in developed countries
responds more strongly to oil price changes than in emerging markets.
2 The petroleum industry consists of three main segments commonly known as the upstream,
midstream and downstream, though the midstream is usually grouped with the upstream.
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As customary in the financial literature, returns are computed as
rit ¼ lnðPi

tÞ � lnðPi
t�1Þ

� �
, where Pi

t is the price of firm i at time t. Returns are
expressed in U.S. dollars.

The upstream oil sector refers to the initial part of the oil value chain, namely the
exploration and production activity. The goal of these activities is to find new oil
resources and bring them to the surface. Oil is produced through the mining and
extraction of oil from oil shale and oil sands, and gas and hydrocarbon liquids are
produced through gasification, liquid faction, and pyrolysis of coal at the mine site.
Oil and natural gas are the main outputs of this industry.

The downstream oil sector refers to the refining of oil crude and the selling and
distribution of natural gas and products derived from crude oil. The refining process
is very complex and involves both chemical reactions and physical separation. Oil
is transformed into an array of products, including gasoline, distillate fuels, and jet
fuel, which are used in other industry businesses. As research work documents a
relation between the price of crude oil and refined products (Asche et al. 2003;
Girma and Paulson 1999; Serletis 1994), we hypothesized that the refining industry
shows some sensitivity to oil prices changes.

We use the following SIC codes to select firms from the oil sector: crude
petroleum & natural gas companies (SIC code 1311) and oil and gas field services
(SIC code 138). These sectors can be classified as being in the upstream segment.
The main difference is that SIC code 138 corresponds to oil and gas field services
which are engaged in performing oil field services for operators on a contract or fee
basis.3 For the downstream sector, we take petroleum refining firms using SIC code
2911. In addition, we drew data from oil and gas field machinery & equipment
companies (SIC code 3533). The sample comprises 260 firms.4,5

Table 1 reports the descriptive statistics by industry. The table provides a
snapshot of the market capitalization of firms and the industry returns.

Gross returns are higher for oil machinery and equipment and oil related ser-
vices, 1.61 and 1.31 % respectively. The standard deviation of returns is lower for
petroleum refiners. Second, the market capitalization of firms is very disperse;
petroleum refiners stand out because the average market capitalization is almost
twenty million dollars while other industries are all less than three million dollars.

3 Because there were few companies in each subsector, we group SIC code 1381 that corresponds
to drilling oil & gas wells; SIC code 1382 to oil & gas field exploration services and SIC code
1389 that corresponds to oil & gas field services companies, not elsewhere classified (nec). Some
sectors were excluded due to few observations (SIC codes 299 and 517).
4 The petroleum industry has been studied in the literature of hedging because it is a good
illustration of the usage of derivatives. For instance, Mackay and Moeller (2007) use the SIC code
2911, and Haushalter et al. (2002) use the SIC code 1311.
5 It is noted that some firms changed SIC code during the period of analysis.
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3.2 Risk Factors

We next describe the risk factors. Table 2 presents the variables’ summary statistics.
Stock Market Excess returns Asset pricing models like the Capital Asset

Pricing Model posit that stock returns are explained by the market portfolio vari-
ations. We proxy the U.S. stock market using the returns of the S&P 500, one of the
main stock market indexes. market is the local market excess return, computed as
the logarithmic changes in the local market index. Returns are in excess of the same
short-term interest rate, namely the one-month Eurodollar interest rate. Both are
drawn from Datastream. We expect that the coefficient market, also known as the
market beta, is positive and statistically significant, similar to previous studies.

3.2.1 Oil and Natural Gas Prices

Oil Futures Prices Oil prices are from the settlement price of the NYMEX oil
futures contract, the most widely traded futures contract on oil. The underlying is
the West Texas Intermediate oil a light crude oil widely used as a current

Table 1 Summary statistics of oil and natural gas firms by SIC code

SIC
codes

Variable Mean Median St.
Deviation

N

1311 Crude petroleum
and natural gas

Returns 1.30 % 0.00 % 16.36 % 29,425

Market
capitalization

22,86,681 283,311 6,378,120 29,486

138 Oil and gas
drilling and other
services

Returns 1.38 % 0.22 % 16.08 % 11,288

Market
capitalization

2,646,157 447,020 7,833,220 11,312

2911 Petroleum
refining

Returns 1.29 % 0.99 % 10.92 % 6,096

Market
capitalization

18,900,000 1,893,735 54,700,000 6,104

3533 Oil and gas field
machinery and
equipment

Returns 1.61 % 1.30 % 14.92 % 2,069

Market
capitalization

2,720,160 732,485 4,872,311 2,072

This table presents the mean, median and standard deviation of returns and market capitalization
by SIC code. N is the number of firms monthly observations. Source CRSP/Compustat
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benchmark for U.S. crude production. Prices are in U.S. dollars per barrel (U$/
BBL). The variable oil is the logarithmic difference of oil prices.

Summary statistics are displayed in Table 2. Oil returns show a positive mean
during the period, around 0.6 % a month, with a standard deviation of almost 9.4 %
monthly. We note that the stock returns of oil firms for the same period had a higher
average return, and a higher standard deviation than oil returns.

Figure 1 depicts the oil futures prices. The price of oil fluctuates little until
around 1998. There is some turbulence in the summer of 1990, which coincides
with the beginning of the invasion of Kuwait and the Gulf War, but prices drop to
normal levels after the end of the war in February 1992. In 1999, prices rise again,
but then fall after 2000 and 2001. They increase again to over $50/BBL in 2005,
$100/BBL in 2007 and almost $150/BBL in July 2008. In the second half of 2008
when many countries worldwide experienced economic recession, prices continue
to slide until the end of the year, to peak again during 2009. The value in June 2009
is again close to $70/BBL but then rebounds to reach $91/BBL at the end of 2010.

Table 2 Summary statistics of independent variables

Variable Description Mean SD Kurtosis Skewness Jarque-
Bera

market S&P 500 log returns 0.002 0.043 4.569 −0.777 54.360***

exchrate Canadian dollar log
variations against the U.S.
dollar

0.000 0.022 8.937 −0.468 413.876***

int rate (monthly) one-month
Eurodollar interest rate

0.004 0.002 2.372 0.025 4.797*

oil Settlement price of the
NYMEX oil futures
contract (log returns)

0.006 0.094 4.912 −0.176 26.995***

gas Settlement price of the
NYMEX natural gas
futures contract (log
returns)

0.003 0.162 3.592 −0.131 3.988

vol oil Estimated volatility from a
GARCH(1,1) model on oil

0.092 0.029 8.759 2.171 585.274***

vol gas Estimated volatility from a
GARCH(1,1) model on
gas

0.161 0.024 9.530 2.385 662.592***

This table reports the summary statistics of the variables S&P 500 returns (market), oil futures
returns (oil), Canadian dollar variations against the U.S. dollar (exchrate), U.S. interest rate
(int rate), oil return volatility (vol oil), natural gas futures returns (gas), natural gas volatility
(vol gas). The sample period ranges from 1988:02 through 2010:12. By column, we report the
mean, the standard deviation (SD), the kurtosis, the skewness and the Jarque-Bera test statistics.
The returns are the first differences of the logarithm of prices in percentage. Superscripts *, ** and
*** denote statistical significance at 10, 5 and 1 % levels respectively. Source Datastream
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Natural Gas Prices Natural gas prices are from the NYMEX gas futures con-
tracts (gas).6 The underlying asset of one contract is 10,000 million British thermal
units (MMBtu) of natural gas delivered at Henry Hub, Louisiana. The Henry Hub is
the largest centralized natural gas trading hub in the U.S. It interconnects nine
interstate and four intrastate pipelines. Collectively, these pipelines provide access
to markets throughout the U.S. East Coast, the Gulf Coast, the Midwest, and up to
the Canadian border. Natural gas production from areas around the Henry Hub
accounts for about 50 % of total U.S. production.

Summary statistics about natural gas returns are displayed in Table 2. Natural
gas returns have a positive mean during the period, around 0.3 % a month, with a
standard deviation of almost 16.2 % monthly. The average return is lower than that
of oil but the standard deviation is higher. Compared to other explanatory variables,
the distribution of natural gas returns seems to be closer to normal since the
hypothesis of normality is not rejected.

Figure 2 depicts natural gas futures prices. The price trend is similar to that of
oil. Prices are stable until the end of the 1990’s and then increase. Natural gas prices
present several price spikes mainly around 2000–2001. Then there is a strong
upward trend after 2003. Prices fall substantially after 2008 and then surge again.

Oil and Natural Gas Return VolatilityWe also analyze the exposure to oil and
gas volatility. Oil price volatility is a source of uncertainty that affects the cost of an
important input or output of firms. This creates uncertainty regarding firm profit-
ability, firm value and investment decisions. Sadorsky (1999) finds that either an oil
price change or its volatility has an impact on real stock returns. Haushalter et al.
(2002) finds that although stock returns of U.S. oil producers have a negative

28−Feb−1988 10−Oct−1995 22−May−2003 01−Jan−2011

Fig. 1 Oil futures price (settlement price of the NYMEX oil futures contract- U$/BBL)

6 Natural gas is one of the cleanest burning fuels, producing primarily carbon dioxide, water
vapor, and small amounts of nitrogen oxides. Natural gas is a source of energy used for both
heating and also producing electricity.
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sensitivity to oil implied volatility, it is not statistically significant. Oberndorfer
(2009) also finds that oil volatility has a negative impact on European oil and
natural gas stock returns.

To compute oil volatility, we use the estimated volatility (vol_oil) obtained from
a GARCH(1,1)

oilt ¼ lþ et

r2t ¼ a0 þ a1e
2
t�1 þ b1r

2
t�1;

where εt = σt ϵt is the prediction error, rt [ 0 is the conditional standard deviation
of the underlying oil return (denoted volatility) and the innovation ϵt * NID(0, 1).
We impose the conditions α0 > 0, α1 ≥ 0 and β1 ≥ 0 to guarantee that the conditional
variance is positive and a1 þ b1\1 to assure its stationarity. The volatility of
natural gas (vol_gas) is estimated in the same way.

Oil and natural gas volatility are depicted in Fig. 3, respectively, and summary
statistics are in Table 2. Table 2 reveals that the kurtosis of oil and gas volatility are
both larger than 8.7, and both show positive skewness.

Interest Rate In the framework of the discounted cash flow method, shocks in
interest rates affect firm value, because the present value of cash flows is smaller.
Moreover, the interest rate is a factor that also proxies for macroeconomic condi-
tions. Empirical evidence on the importance of interest rates for oil and gas industry
returns is mixed. Boyer and Filion (2007) finds that interest rates have a negative
significant impact on stock returns in the Canadian oil and gas industry. The term
premium, the difference between the three-month and one-month interest rate, has a
positive impact on industry returns. El-Sharif et al. (2005) and Oberndorfer (2009),
however, do not find statistical significance for interest rates. To proxy the interest
rate factor, we use the one-month Eurodollar interest rate ðint rateÞ.

Exchange Rate The theoretical model of Adler and Dumas (1983) and Solnik
(1974) supports the pricing of exchange rate fluctuations in a global setting.

30−May−1990 10−Apr−1997 20−Feb−2004 01−Jan−2011

Fig. 2 Gas futures price (settlement price NYMEX gas futures contracts—MMBtu)
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Therefore, we test whether excess returns of the oil industry show some sensitivity
to changes in the currency rates against the U.S. dollar.

As Canada is one of the main oil trade partners of the U.S., we computed the
logarithmic changes in Canadian dollar rates against the U.S. dollar ðexchrateÞ.
exchrate is expressed in foreign currency per unit of U.S. dollars; thus a positive
change in the rate means that the U.S. dollar depreciated with respect to the foreign
currency, which might increase revenues if the firm is foreign sales oriented.
Contrary to expectations, Sadorsky (2001) and Boyer and Filion (2007) studying
the Canadian oil and gas industry find that a weakening of the Canadian dollar
against the U.S. dollar has a negative impact on stock returns.

Table 2 presents summary statistics for the currency rate. The exchange rate
volatility is on average lower than the volatility of oil and gas companies and
market returns. Since kurtosis is higher than three and there is negative skewness;
the Jarque-Bera test rejects the null of Gaussian currency returns.

28−Feb−1988 10−Oct−1995 22−May−2003 01−Jan−2011

30−May−1990 10−Apr−1997 20−Feb−2004 01−Jan−2011

Fig. 3 Oil price volatility (first panel); gas price volatility (second panel)
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4 Methodology and Estimation

4.1 Methodology

Following previous studies on oil industry risk factors, we construct industry
portfolios for each SIC code, weighting firm returns in each SIC code by their
market capitalization.

The analysis of the risk factors on the oil industry has been undertaken using
both multifactor models (see Basher and Sadorsky 2006; Nandha and Faff 2008;
Ramos and Veiga 2011; Sadorsky 2008) and vector autoregressive models (see
Cong et al. 2008; Park and Ratti 2008; Sadorsky 1999). We follow the literature
that uses factor models to examine the impact of systematic factors on stock returns
(see Ferson and Harvey 1994; Haushalter et al. 2002; Jin and Jorion 2006; Karolyi
and Stulz 2003; Tufano 1998). According to Ferson and Harvey (1994), factor
regressions provide information about the usefulness of factors in controlling for the
risks of investments. The models that we estimate for the oil and gas industries are:

rit ¼ ai þ b1imarkett þ b2iexchratet þ b3iint ratet þ b4ioilt þ b5ivol oilt þ uit ð1Þ

and

rit ¼ ai þ b1imarkett þ b2iexchratet þ b3iint ratet þ b4ioilt þ b5igast
þ b6ivol gast þ uit; ð2Þ

where rit is the excess return of the SIC industry index i at time t. These are time
series regressions for each i with i ¼ 1; ::4. bji are the coefficients of rit on several
risk factors, such as market, exchrate, int rate, oil, vol oil, gas and vol oil. The
ai‘s are the intercepts and uit is the error term and represents the excess return not
explained by the factors in each model. The models are estimated by Ordinary Least
Squares. The correlation among explanatory variables is low with the exception of
stock market returns (market) and the exchange rate (exchrate). Results are not
shown for brevity’s sake but are available from the authors.

4.2 Asymmetry Measures and Tests

To test for asymmetric effects of oil price changes, we define nonlinear measures of
oil price changes. The traditional approach is based on a dummy variable that
differentiates positive from negative oil price changes and multiplies the variable oil
price changes, which is equivalent to the following variables:
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oilpt ¼ maxð0; oiltÞ
oilnt ¼ minð0; oiltÞ;

at time t, the oilp (oiln) variable assumes positive (negative) values each time
changes are positive (negative) and zero otherwise.

Similarly we also define

gaspt ¼ maxð0; gastÞ
gasnt ¼ minð0; gastÞ;

at time t, for positive and negative changes of natural gas.
Figure 4 depicts oilp and oiln. Many large monthly changes are as great as

þ=� 20 %. There are four large declines in prices that correspond to December
1990 and January 1991 with the end of the Gulf War; December 2000; March 2003
and more recently October and December 2008. Price spikes can be seen in July,
August and September of 1990 (the beginning of the Gulf War), March 1999, May
2000, March 2002, January 2005 and May 2009.

We use tests of asymmetry that favor asymmetry if we reject the null hypothesis
of symmetry H01 : boilp ¼ boiln.

7 Thus, the null is rejected if coefficients are sta-
tistically different. A possibility is that the null is not rejected when the two
coefficients are not significant, i.e., although oil has a non significant effect on stock
markets, the null leads us to conclude for symmetry. To account for this issue, a
second hypothesis is formulated H02 : boilp ¼ 0 and boiln ¼ 0. Asymmetry is
therefore assured by the joint rejection of the two null hypotheses: H01 and H02.

Another two measures are introduced with the aim of capturing oil price shocks
or innovations. Hamilton (1996) advocates that it is more appropriate to compare
the current price of oil with its value over the last year, rather than during the
previous month alone, to measure how unsettling an increase in the price of oil is
likely to be for the spending decisions of consumers and firms. Net oil price
increase (nopi) at time t is defined as:

nopit ¼ maxð0; lnðp oiltÞ � lnðmaxðp oilt�1; . . .; p oilt�12ÞÞÞ:

nopi can be interpreted as the amount by which the log oil futures price exceeds its
maximum value over the last year (here, p oilt is used for oil futures price). Note
that nopi would be small in a period of consistently escalating oil prices, but if
prices soar sharply then nopi is high. Kilian (2008) refers that nopi has the
advantage of being a better measure to extract the exogenous component of oil price
fluctuations. Likewise, we define net oil price decline (nopd) at time t as
nopdt ¼ minð0; lnðp oiltÞ � lnðmaxðp oilt�1; . . .; p oilt�12ÞÞÞ. nopd is negative
when oil prices are below its peak value over the last year.

7 See (Nandha and Faff 2008; Park and Ratti 2008; Ramos and Veiga 2011, for instance).
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Similarly for natural gas, we define the natural gas price increase (ngpi) and
natural gas price decrease (ngpd) measures where p gas is the price of gas.

ngpit ¼ maxð0; lnðp gastÞ � lnðmaxðp gast�1; . . .; p gast�12ÞÞÞ
ngpdt ¼ minð0; lnðp gastÞ � lnðmaxðp gast�1; . . .; p gast�12ÞÞÞ;

Asymmetry is also checked using a measure developed by Lee et al. (1995)
called scaled oil price increases (sopi). According to these authors, what matters is
how unexpected an oil price increase is based on the observed changes. An
unexpected oil price change, it will have less impact when conditional variances are
large because much of the change in oil price will be regarded as transitory.

In order to calculate this measure, we estimate a GARCH(1,1) model similar to
the one presented in the previous subsection. Therefore, a measure that reflects the
size and variability of the unexpected oil shock might be defined as ê�t ¼ êt

r̂t
and

consequently sopi at time t is given by:

sopit ¼ maxð0; ê�t Þ:

In a similar manner scaled oil price declines (sopd) at time t are defined as
sopdt ¼ minð0; ê�t Þ. Therefore, oil price increases and decreases are scaled by the oil
return conditional standard deviation. sopi and sopd will be large (in absolute value)
when the oil innovation is large (in absolute value). Similarly for natural gas, we

28−Feb−1988 10−Oct−1995 22−May−2003 01−Jan−2011

Fig. 4 Oil futures price increases (continuous line) and oil futures price decreases (dotted line)
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define the scaled natural gas price increases (sgpi) and scaled natural gas price
decrease (sgpd) measures.8,9

sgpit ¼ maxð0; ê�t Þ
sgpdt ¼ minð0; ê�t Þ:

Figure 5 plots nopi and nopd for the sample period December–1988 to
December–2010. We see episodes of peaking prices that seem to cluster in some
periods of time. nopd also has some peaks and slumps, and we can see the dramatic
fall of oil futures prices during 2009. Figure 6 graphs sopi and sopd. Although the
figure has some similarities with returns (see Fig. 4), we also see some differences,
namely the variables sopi and sopd have a more shrinking scale due to the stan-
dardization. Figures 7, 8 and 9 depict the asymmetry measures for natural gas. In
Fig. 8, we observe three strong downward trends in 1997, 2001, and 2009. Also,
ngpi seems very smooth compared to ngpd; this may be because there is some
correction in the price after prices spikes, common in natural gas.

The equations for testing asymmetric effects are:

rit ¼ ai þ bjift þ b4ix
þ
t þ b5ix

�
t þ uit; ð3Þ

where j ¼ 1; . . .; 3; i ¼ 1; . . .; 4 SIC codes, f are the factors defined in Eqs. (1) and
(2), excluding oil and gas, and the following asymmetry measures xþ 2
foilp; nopi; sopi; gasp; ngpi; sgpig and x� 2 foiln; nopd; sopd; gasn; ngpd; sgpdg.

5 Empirical Results

Table 3 displays the results of the analysis of the risk factors for each of the industry
portfolios. Each column shows the result for each segment defined by SIC code.

The first row shows the impact of stock market changes. Oil and gas producers
(SIC code 1311) and the refining industry (SIC code 2911) have the lowest market
betas, 0.619 and 0.535. Results are consistent with previous work. As an example,
Elyasiani et al. (2011) find a beta lower than one for oil-gas extraction and
petroleum refinery in the U.S. economy and Sadorsky (2001) a beta of 0.7 for
Canadian firms. This means that industry returns change less than proportionally

8 Both nopi and sopi (ngpi and sgpi) are nonlinear and time-dependent measures. The time
dependence of nopi comes from the fact that if a shock is not large enough to increase prices
above their value of the previous year, then the shock is scaled down to zero. sopi scales the
shocks that occur in a volatile period down and scales those that occur in a less volatile period
up.
9 Given that sopi also accounts for oil volatility by scaling the shocks down and up according to
the volatility of the period, we do not include oil volatility in the models.
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with stock market returns. The market beta is around one for SIC codes 138 and
3533, which suggests that market shocks have a similar impact on the segments.

To examine the economic significance of these effects, we calculate the effect of
one standard deviation change in the variables on each of the industry returns
considered. These effects can be calculated by multiplying the coefficient estimated
for the variable by its respective standard deviation reported in Table 2. Regarding
economic significance, one standard deviation shock to the market returns increases
stock returns of crude petroleum and natural gas (SIC code 1311) in 2.663 % and of
oil and gas field machinery and equipment (SIC code 3533) 4.693 %.

28−Feb−1989 10−Jun−1996 21−Sep−2003 01−Jan−2011

Fig. 5 Net oil futures price increases (continuous line) and net oil futures price decreases (dotted
line)

28−Feb−1988 10−Oct−1995 22−May−2003 01−Jan−2011

Fig. 6 Scaled oil futures price increases (continuous line) and scaled oil futures price decreases
(dotted line)
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Exchange rate coefficients are positive, but are statistically significant only for
crude petroleum and natural gas (SIC code 1311). This seems to indicate that the
depreciation of the U.S. dollar has a positive effect on stock returns; this may be
because it increases foreign sales as crude is traded internationally in U.S. dollars.

Interest rates have a negative coefficient in line with previous studies that can
result from the contractionary effect that high interest rates have in the economy or
in the present value of the firm, but it is not statistically significant.

Oil price changes are statistically significant for all industry segments. Coeffi-
cients range from 0.153 in petroleum refiners (downstream) to 0.444 in oil and gas

30−May−1990 10−Apr−1997 20−Feb−2004 01−Jan−2011

Fig. 7 Gas futures price increases (continuous line) and gas futures price decreases (dotted line)

31−May−1991 10−Dec−1997 21−Jun−2004 01−Jan−2011

Fig. 8 Net gas futures price increases (continuous line) and net gas futures price decreases (dotted
line)
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30−May−1990 10−Apr−1997 20−Feb−2004 01−Jan−2011

Fig. 9 Scaled gas futures price increases (continuous line) and scaled gas futures price decreases
(dotted line)

Table 3 Risk factors of the oil industry

Crude and nat. gas
producers

Drilling and other
services

Petroleum
refineries

Machinery and
equipment

SIC codes 1311 138 2911 3533

market 0.619 0.645 0.962 1.006 0.535 0.548 1.091 1.123

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

exchrate 0.659 0.570 0.386 0.268 0.073 0.047 0.314 0.229

(0.000) (0.000) (0.130) (0.252) (0.524) (0.677) (0.315) (0.431)

int rate −1.382 −1.514 0.342 −0.008 1.475 2.060 1.529 0.437

(0.235) (0.301) (0.840) (0.997) (0.156) (0.147) (0.514) (0.886)

oil 0.273 0.206 0.345 0.294 0.153 0.118 0.444 0.375

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

vol oil -0.059 -0.029 −0.004 0.020

(0.586) (0.839) (0.967) (0.927)

gas 0.144 0.141 0.059 0.151

(0.000) (0.000) (0.000) (0.001)

vol gas 0.110 0.393 0.011 0.317

(0.415) (0.024) (0.919) (0.211)

Constant 0.023 0.000 0.013 −0.053 0.005 0.001 0.009 −0.038

(0.035) (0.985) (0.374) (0.084) (0.635) (0.959) (0.675) (0.379)

Observations 269 242 275 248 266 239 275 248

R2 0.534 0.642 0.477 0.546 0.381 0.415 0.387 0.443

This table reports estimation results of Eqs. ((1) and (2)) where the dependent variable is the monthly excess
returns of value weighted portfolios formed by SIC code. Sample period: 1988:02 through 2010:12.
Explanatory variables are described on Table 11. Robust p-values are reported below coefficients
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field machinery and equipment (SIC code 3533). For instance, one standard devi-
ation positive shock results in an approximately 1.45–4.19 % significant increase in
stock returns, respectively. Note that the impact is greater for complementary
activities and lower for oil producers and refiners. Oil volatility has a negative
coefficient but is not statistically significant, a result similar to that of Haushalter
et al. (2002).

We next analyze the impact of natural gas price changes (second column of
Table 3 for each SIC code). Given the close relation between natural gas and oil, we
also include oil in the regression to control for its effects. Coefficients of other
variables are similar, but that of oil is slightly smaller. The coefficient of natural gas
is positive and ranges between 0.059 and 0.151; the small interval means that
sensitivity does not differ much among industries. The impact is also economically
significant; one standard deviation shock has an impact on stock returns of pro-
ducers of 2.34 % (upstream). The volatility of natural gas does not have an impact
on the returns of the industry except for oil and gas field services (SIC code 138).
The R2 of the estimation increases when natural gas is included as an explanatory
variable.

Table 4 shows the results of the asymmetry tests for oil in order to see whether
markets perceive a pass-through effect of the industry. We repeat the estimation of
Eq. (3). The different subpanels show the results for the various measures. For the
sake of brevity, we only present the coefficients of asymmetric measures. We recall
that the null must be rejected in both hypotheses H01 and H02 to substantiate the
statistical significance of asymmetry at standard levels of significance. The results
confirm that crude petroleum & natural gas (SIC code 1311) present asymmetric
effects. While oilp and nopi coefficients are larger than oiln and nopd, sopi is
smaller than sopd, i.e., the asymmetry is scaled effects goes in the opposite
direction.

Petroleum refining (SIC code 2911) shows asymmetric effects using sopi and
sopd and using oilp and oiln (only weaker evidence). This is consistent with Lee
and Ni (2002) results which conclude that although the output of the petroleum
refinery is not significantly affected by oil price shocks, its price increases signif-
icantly. Machinery and equipment (SIC code 3533) also shows asymmetric effects
for nopi and nopd.

Table 5 presents the results of the asymmetry tests for natural gas prices. The
tests confirm the existence of asymmetry effects in the upstream segment using ngpi
and ngpd and sgpi and sgpd, and in the downstream segment using ngpi and ngpd.

Overall, the results show that oil and natural gas price changes are risk factors
for all industry segments. While the sensitivity to natural gas returns is very similar
across industries, the sensitivity to oil differs for industry segments. Crude petro-
leum & natural gas industry returns (upstream) change asymmetrically with oil and
natural gas price changes but petroleum refining industry returns (downstream) also
change asymmetrically with oil price changes; this suggests that both upstream and
downstream segments might have a pass-through effect.
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Table 4 Asymmetric effects of oil futures returns

Crude and nat. gas
producers

Drilling and other
services

Petroleum
refineries

Machinery and
equipment

SIC codes 1311 138 2911 3533

Panel A oilp and oiln

oilp 0.399 0.426 0.230 0.587

(0.000) (0.000) (0.000) (0.000)

oiln 0.149 0.266 0.078 0.303

(0.047) (0.034) (0.102) (0.062)

Observations 269 275 266 275

R2 0.547 0.48 0.39 0.393

Test 1 4.38 0.68 3.61 1.17

p-value (0.037) (0.410) (0.059) (0.280)

Test 2 23.88 15.02 15.47 14.97

p-value (0.000) (0.000) (0.000) (0.000)

Panel B nopi and nopd

nopi 0.231 0.179 0.063 0.260

(0.012) (0.180) (0.413) (0.054)

nopd 0.033 0.053 0.027 0.090

(0.076) (0.096) (0.069) (0.024)

Observations 257 263 254 263

R2 0.431 0.373 0.316 0.306

Test 1 3.9 0.74 0.22 3.9

p-value (0.049) (0.392) (0.637) (0.049)

Test 2 7.55 3.55 3.9 7.55

p-value (0.001) (0.030) (0.022) (0.001)

Panel C sopi and sopd

sopi 0.039 0.042 0.024 0.059

(0.000) (0.000) (0.000) (0.000)

sopd 0.016 0.026 0.010 0.031

(0.019) (0.024) (0.012) (0.036)

Observations 269 275 266 275

R2 0.566 0.494 0.424 0.417

Test 1 4.95 0.91 5.02 1.47

p-value (0.027) (0.340) (0.026) (0.227)

Test 2 37.06 23.18 39.37 21.1

p-value (0.000) (0.000) (0.000) (0.000)

This table reports a summary of estimation results of Eq. (3) and analogously for the other
measures of asymmetry from 1988:02 through 2010:12. The dependent variable is the monthly
excess returns of value weighted portfolios in U.S. dollars. Explanatory variables are described on
Table 2. Measures of asymmetry are oil futures price increases (oilp), oil futures price decreases
(oiln), net oil futures price increases (nopi), net oil futures price decreases (nopd), scaled oil futures
price increases (sopi), scaled oil futures price decreases (sopd). Robust p-values are reported below
coefficients. Test 1 corresponds to the null hypothesis H01 : boilp ¼ boiln and test 2 to H02 : boilp ¼
0 and boiln ¼ 0, and analogously for the other measures of asymmetry
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Table 5 Asymmetric effects of natural gas returns

Crude and nat. gas
producers

Drilling and other
services

Petroleum
refineries

Machinery and
equip.

SIC codes 1311 138 2911 3533

Panel A gasp and gasn

gasp 0.167 0.136 0.055 0.172

(0.000) (0.037) (0.028) (0.043)

gasn 0.121 0.145 0.062 0.132

(0.001) (0.000) (0.023) (0.029)

Observations 242 248 239 248

R2 0.643 0.546 0.415 0.444

Test 1 0.69 0.01 0.03 0.12

p-value (0.409) (0.920) (0.873) (0.733)

Test 2 26.44 11.2 8.82 6.23

p-value (0.000) (0.000) (0.002) (0.002)

Panel B ngpi and ngpd

ngpi 0.213 0.184 0.073 0.217

(0.009) (0.198) (0.036) (0.215)

ngpd 0.010 0.011 0.001 0.020

(0.277) (0.507) (0.937) (0.302)

Observations 231 236 227 236

R2 0.587 0.515 0.387 0.435

Test 1 5.85 1.33 3.49 1.18

p-value (0.016) (0.246) (0.063) (0.278)

Test 2 5.33 1.4 2.81 1.82

p-value (0.006) (0.249) (0.062) (0.164)

Panel C sgpi and sgpd

sgpi 0.026 0.020 0.009 0.026

(0.000) (0.038) (0.022) (0.045)

sgpd 0.021 0.024 0.010 0.022

(0.000) (0.000) (0.027) (0.023)

Observations 242 248 239 248

R2 0.641 0.532 0.415 0.438

Test 1 0.25 0.13 0.01 0.03

p-value (0.016) (0.723) (0.912) (0.856)

Test 2 27.38 10.44 8.68 6.39

p-value (0.000) (0.000) (0.000) (0.002)

This table reports estimation results of Eq. (3) and analogously for the other measures of
asymmetry except from 1988:02 through 2010:12. The dependent variable is the monthly excess
returns of value weighted portfolios in U.S. dollars. Explanatory variables are described on
Table 2. Measures of asymmetry are gas futures price increases (gasp), gas futures price decreases
(gasn), net gas futures price increases (ngpi), net gas futures price decreases (ngpd), scaled gas
futures price increases (sgpi), scaled gas futures price decreases (sgpd). Robust p-values are
reported below coefficients. Test 1 corresponds to the null hypothesis H01 : bgasp ¼ bgasn and test2
to H02 : bgasp ¼ 0 and bgasn ¼ 0, and analogously for the other measures of asymmetry
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6 Time Variation of Asymmetric Effects

To our knowledge, the literature of asymmetric effects has not addressed whether
and how, asymmetric effects change over time. To analyze this time issue, we
estimate Eq. (3) using a rolling window of fixed width, with 30 observations.

Figures 10 and 11 depict the estimations of the coefficients of oilp and oiln and
gasp and gasn, respectively, using rolling windows. The figures show that the
coefficients are not stable over time. A visual inspection allows us to see that oilp is
larger than oiln mainly in the period 1998–2004. To substantiate this hypothesis, we
divide the sample into three subperiods: 1989–1997, 1998–2004 and 2005–2010
and we redo the estimations of Eq. (3).

Table 6 shows the results for the period ranging from 1989 to 1997. The
coefficient of oiln tends to be larger than oilp, and sopd is also larger than sopi, but
there are no asymmetric effects. nopi is larger than nopd for crude petroleum and
natural gas (SIC Code 1311) but the difference is not statistically significant.

Table 7 shows the results for the period 1998–2004. Positive changes of oil
prices (oilp) always have a larger coefficient than negative changes (oiln) for
industry segments. Tests confirm statistically that crude petroleum and natural gas
(SIC Code 1311), oil and gas services wells (SIC Code 138) and petroleum refiners
(SIC code 2911) present asymmetric effects using oilp and oiln and sopi and sopd at
standard levels of significance. The results for nopi are surprising. nopd tends to be
statistically significant with a positive coefficient and there is no asymmetry.

Table 8 analyzes the period that ranges from 2005 to 2010. oilp is larger than
oiln for the upstream and downstream industry segments and the difference is
statistically significant. Although nopi is larger than nopd, the difference is only
statistically significant for crude petroleum and natural gas (SIC Code 1311). Using
sopi and sopd, there is no evidence of asymmetry at standard levels of significance.
Concerning natural gas and looking at Fig. 11, it seems that there may only be
asymmetric effects in the period 1997–2003.

7 Robustness Analysis

In this section, we check whether the results are robust to the use of spot prices
instead of futures prices. We use the price of West Texas Intermediate (WTI) crude
traded in the spot market at the Cushing, Oklahoma Center (oil). Prices are in U.S.
dollars per barrel ($/BBL).10 We recompute all oil related asymmetric variables
with oil spot prices. Table 9 presents the results and all coefficients are similar to
those obtained previously. Table 10 presents the results of asymmetric tests. Using

10 WTI is a type of crude oil used as a benchmark in oil pricing and is the underlying commodity
of New York Mercantile Exchange’s (NYMEX) oil futures contracts. WTI is a light crude and is
refined in Gulf Coast regions in the United States.
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Fig. 10 Time-varying asymmetry. Coefficient estimates of oil futures price increases (continuous
line) and oil futures price decreases (dotted line)
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Fig. 11 Time-varying asymmetry. Coefficient estimates of gas futures price increases (continuous
line) and gas futures price decreases (dotted line)
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Table 6 Asymmetry effects of oil returns: period 1989–1997

Crude and nat. gas
producers

Drilling and other
services

Petroleum
refineries

Machinery and
equipment

SIC codes 1311 138 2911 2533

Panel A oilp and oiln

oilp 0.211 0.134 0.110 0.416

(0.001) (0.205) (0.118) (0.005)

oiln 0.294 0.418 0.221 0.410

(0.000) (0.000) (0.000) (0.026)

Observations 104 108 108 108

R2 0.539 0.418 0.535 0.285

Test 1 0.58 2.43 1.08 0

p-value (0.448) (0.123) (0.300) (0.982)

Test 2 27.8 11.67 19.34 11.56

p-value (0.000) (0.000) (0.000) (0.000)

Panel B nopi and nopd

nopi 0.138 0.012 0.049 0.173

(0.081) (0.907) (0.422) (0.290)

nopd 0.039 0.067 0.023 0.139

(0.095) (0.075) (0.163) (0.023)

Observations 103 107 107 107

R2 0.341 0.308 0.398 0.226

Test 1 1.14 0.2 0.15 0.03

p-value (0.289) (0.657) (0.703) (0.867)

Test 2 6.25 2.37 2.08 6.76

p-value (0.003) (0.099) (0.130) (0.002)

Panel C sopi and sopd

sopi 0.021 0.016 0.013 0.044

(0.000) (0.106) (0.025) (0.001)

sopd 0.028 0.043 0.021 0.042

(0.000) (0.000) (0.000) (0.003)

Observations 104 108 108 108

R2 0.575 0.449 0.576 0.318

Test 1 0.75 3.89 0.75 0.01

p-value (0.388) (0.082) (0.388) (0.933)

Test 2 48.56 25.78 38.69 16.93

p-value (0.000) (0.000) (0.000) (0.000)

This table reports estimation results of Eq. (3) from 1988:02 through 1997:12. The dependent
variable is the monthly excess returns of value weighted portfolios in U.S. dollars. Explanatory
variables are described on Table 2 and oil futures price increases (oilp), oil futures price decreases
(oiln), net oil futures price increases (nopi), net oil futures price decreases (nopd), scaled oil futures
price increases (sopi), scaled oil futures price decreases (sopd). Robust p-values are reported below
coefficients. Test 1 corresponds to the null hypothesisH01 : boilp ¼ boiln and test 2 toH02 : boilp ¼ 0
and boiln ¼ 0, and analogously for the other measures of asymmetry
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Table 7 Asymmetry effects of oil returns: period 1998–2004

Crude and nat. gas
producers

Drilling and other
services

Petroleum
refineries

Machinery and
equipment

SIC codes 1311 138 2911 2533

Panel A oilp and oiln

oilp 0.558 0.772 0.328 0.973

(0.000) (0.000) (0.000) (0.001)

oiln −0.114 −0.131 −0.079 −0.061

(0.492) (0.690) (0.206) (0.889)

Observations 82 84 83 84

R2 0.475 0.478 0.377 0.406

Test 1 8.5 4.2 20.74 2.7

p-value (0.005) (0.044) (0.000) (0.105)

Test 2 14.42 15.22 19.36 8.29

p-value (0.000) (0.000) (0.000) (0.001)

Panel B nopi and nopd

nopi −0.130 0.271 −0.078 0.204

(0.615) (0.437) (0.760) (0.619)

nopd 0.166 0.170 0.064 0.264

(0.008) (0.064) (0.113) (0.055)

Observations 82 84 83 84

R2 0.385 0.389 0.278 0.326

Test 1 1.01 0.06 0.26 0.01

p-value (0.317) (0.800) (0.610) (0.904)

Test 2 4.24 3.48 1.47 3.63

p-value (0.018) (0.036) (0.237) (0.031)

Panel C sopi and sopd

sopi 0.051 0.066 0.031 0.089

(0.000) (0.000) (0.000) (0.000)

sopd −0.008 −0.006 −0.008 0.000

(0.585) (0.819) (0.211) (0.991)

Observations 82 84 83 84

R2 0.488 0.472 0.39 0.42

Test 1 8.13 3.76 18.88 3.08

p-value (0.006) (0.056) (0.000) (0.083)

Test 2 15.43 12.72 21.61 9.66

p-value (0.000) (0.000) (0.013) (0.000)

This table reports estimation results of Eq. (3) from 1998 until 2004. The dependent variable is the
monthly excess returns of value weighted portfolios in U.S. dollars. Explanatory variables are
described on Table 2. oil futures price increases (oilp), oil futures price decreases (oiln), net oil
futures price increases (nopi), net oil futures price decreases (nopd), scaled oil futures price
increases (sopi), scaled oil futures price decreases (sopd). Robust p-values are reported below
coefficients. Test 1 corresponds to the null hypothesisH01 : boilp ¼ boiln and test 2 toH02 : boilp ¼ 0
and boiln ¼ 0, and analogously for the other measures of asymmetry
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Table 8 Asymmetric effects of oil returns: period 2005–2010

Crude and natural gas
producers

Drilling and other
services

Petroleum
refineries

Machinery and
equipment

SIC codes 1311 1381 1382 1389

Panel A oilp and oiln

oilp 0.637 0.507 0.456 0.353

(0.000) (0.003) (0.000) (0.046)

oiln 0.258 0.591 0.045 0.703

(0.084) (0.000) (0.706) (0.000)

Observations 72 72 64 72

R2 0.709 0.68 0.476 0.679

Test 1 3.4 0.12 4.94 1.7

p-value (0.070) (0.731) (0.030) (0.197)

Test 2 19.82 21.15 10.36 18.86

p-value (0.000) (0.000) (0.000) (0.000)

Panel B nopi and nopd

nopi 0.572 0.327 0.245 0.189

(0.002) (0.269) (0.263) (0.573)

nopd 0.011 0.008 0.060 0.063

(0.783) (0.892) (0.198) (0.157)

Observations 72 72 64 72

R2 0.577 0.474 0.399 0.504

Test 1 8.04 1.01 0.57 0.13

p-value (0.006) (0.318) (0.455) (0.720)

Test 2 6.68 0.75 3.48 1.62

p-value (0.002) (0.475) (0.038) (0.205)

Panel C sopi and sopd

SIC codes 1311 1381 1382 1389

sopi 0.054 0.045 0.037 0.032

(0.000) (0.003) (0.001) (0.043)

sopd 0.033 0.060 0.016 0.075

(0.023) (0.000) (0.157) (0.000)

Observations 72 72 64 72

R2 0.719 0.683 0.489 0.696

Test 1 1.17 0.48 1.25 3.07

p-value (0.283) (0.493) (0.269) (0.085)

Test 2 19.97 24.19 12.77 28.42

p-value (0.000) (0.000) (0.000) (0.000)

This table reports estimation results of Eq. (3) from 2005 through 2010. The dependent variable is
the monthly excess returns of value weighted portfolios in U.S. dollars. Explanatory variables are
described on Table 2. oil futures price increases (oilp), oil futures price decreases (oiln), net oil
futures price increases (nopi), net oil futures price decreases (nopd), scaled oil futures price
increases (sopi), scaled oil futures price decreases (sopd). Robust p-values are reported below
coefficients. Test 1 corresponds to the null hypothesisH01 : boilp ¼ boiln and test 2 toH02 : boilp ¼ 0
and boiln ¼ 0, and analogously for the other measures of asymmetry
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oilp and oiln, we find asymmetric effects for all industry segments. Thus, the market
seems to react to contemporaneous information on spot prices. However, exoge-
nous measures like net price variations and scaled price variations confirm asym-
metric effects only for oil producers and petroleum refiners.

The procedure is repeated for natural gas. Spot prices are from Henry Hub,
Louisiana (gas) and the settlement price for the NYMEX natural gas futures con-
tract. Table 10 presents the results and all coefficients are similar to those obtained
previously. Table 11 presents the results of asymmetric tests, but we do not find
statistical support for the asymmetry hypothesis.

A second test of robustness consists of using the market portfolio computed by
Datastream, which weights all stocks of the U.S. market. Results are kept
unchanged and we do not present them for the sake of brevity.

Table 9 Risk factors of the oil industry using oil spot returns

Crude and natural
gas producers

Drilling and other
services

Petroleum
refineries

Machinery and
equipment

SIC codes 1311 138 2911 3533

market 0.614 0.564 0.953 0.913 0.531 0.500 1.081 0.946
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

exchrate 0.659 0.693 0.396 0.347 0.078 0.073 0.319 0.406
(0.000) (0.000) (0.120) (0.184) (0.492) (0.554) (0.306) (0.203)

int rate −1.380 −0.399 0.343 1.097 1.484 2.615 1.552 2.360
(0.234) (0.819) (0.840) (0.684) (0.153) (0.111) (0.506) (0.492)

oil 0.272 0.227 0.337 0.317 0.148 0.126 0.437 0.417
(0.000) (0.000) (0.000) (0.000) (0.000) (0.002) (0.000) (0.000)

vol oil −0.054 −0.043 −0.007 0.017

(0.618) (0.777) (0.952) (0.940)

gas 0.114 0.118 0.051 0.131

(0.000) (0.000) (0.000) (0.001)

vol gas 0.013 0.111 0.035 0.100

(0.828) (0.052) (0.455) (0.236)

Constant 0.023 0.013 0.014 −0.013 0.005 −0.005 0.009 −0.009
(0.037) (0.317) (0.345) (0.417) (0.623) (0.660) (0.672) (0.642)

Observations 269 201 275 205 266 196 275 205

R2 0.533 0.633 0.471 0.551 0.375 0.411 0.384 0.473

This table reports estimation results of equations ((1) and (2)) from 1988:02 through 2010:12. The
dependent variable is the monthly excess returns of value weighted portfolios in U.S. dollars.
Explanatory variables are described on Table 2. Oil (natural gas) price variations are computed using oil
(natural gas) spot prices. Robust p-values are reported below coefficients
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Table 10 Results of asymmetric tests of oil using spot prices

Crude and natural gas
producers

Drilling and other
services

Petroleum
refineries

Machinery and
equiment

SIC codes 1311 138 2911 2533

Panel A oilp and oiln

oilp 0.425 0.490 0.244 0.668

(0.000) (0.000) (0.000) (0.000)

oiln 0.052 0.068 0.031 0.066

(0.177) (0.253) (0.368) (0.438)

Observations 269 275 266 275

R2 0.535 0.459 0.386 0.376

Test 1 16.2 9.21 9.83 8.77

p-value (0.000) (0.003) (0.002) (0.003)

Test 2 23.16 13.9 14.39 14.87

p-value (0.000) (0.000) (0.000) (0.000)

Panel B nopi and nopd

nopi 0.229 0.182 0.068 0.266

(0.012) (0.168) (0.376) (0.048)

nopd 0.033 0.051 0.025 0.087

(0.072) (0.100) (0.086) (0.025)

Observations 257 263 254 263

R2 0.43 0.372 0.315 0.306

Test 1 3.91 0.82 0.26 1.38

p-value (0.049) (0.358) (0.609) (0.240)

Test 2 7.48 3.5 2.8 6.99

p-value (0.001) (0.032) (0.063) (0.011)

Panel C sopi and sopd

sopi 0.038 0.041 0.024 0.058

(0.000) (0.000) (0.000) (0.000)

sopd 0.017 0.026 0.009 0.031

(0.016) (0.028) (0.023) (0.039)

Observations 269 275 266 275

R2 0.562 0.489 0.421 0.414

Test 1 4.11 0.86 5.41 1.4

p-value (0.044) (0.354) (0.021) (0.239)

Test 2 35.66 22.06 37.55 20.76

p-value (0.000) (0.000) (0.000) (0.000)

This table reports estimation results of Eq. (3) and analogously for the other measures of
asymmetry from 1988:02 through 2010:12. The dependent variable is the monthly excess returns
of value weighted portfolios in U.S. dollars. Explanatory variables are on Table 2. Asymmetry
measures are oil price increases (oilp), oil price decreases (oiln), net oil price increases (nopi), net
oil price decreases (nopd), scaled oil price increases (sopi), scaled oil price decreases (sopd).
Robust p-values are reported below coefficients. Test 1 corresponds to the null hypothesis H01 :

boilp ¼ boiln and test 2 to H02 : boilp ¼ 0 and boiln ¼ 0, and analogously for the other measures of
asymmetry
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Table 11 Results of asymmetric tests of natural gas using spot prices

Crude and natural gas
producers

Drilling and other
services

Petroleum
refineries

Machinery and
equipment

SIC codes 1311 138 2911 2533

Panel A gasp and gasn

gasp 0.117 0.104 0.030 0.130

(0.001) (0.072) (0.182) (0.076)

gasn 0.110 0.133 0.073 0.133

(0.004) (0.000) (0.014) (0.007)

Observations 201 205 196 205

R2 0.633 0.551 0.414 0.473

Test 1 0.01 0.16 0.90 0.00

p_value (0.918) (0.690) (0.344) (0.979)

Test 2 15.88 11.82 7.13 7.23

p_value (0.000) (0.000) (0.001) (0.009)

Panel B ngpi and ngpd

ngpi 0.142 0.162 0.033 0.140

(0.063) (0.137) (0.249) (0.274)

ngpd 0.014 0.013 0.004 0.024

(0.135) (0.377) (0.605) (0.153)

Observations 190 193 184 193

R2 0.573 0.519 0.37 0.438

Test 1 2.61 1.75 0.76 0.78

p_value (0.108) (0.187) (0.385) (0.379)

Test 2 4.31 1.9 1.4 2.04

p_value (0.015) (0.152) (0.250) (0.133)

Panel C sgpi and sgpd

sgpi 0.020 0.016 0.005 0.019

(0.002) (0.116) (0.306) (0.131)

sgpd 0.027 0.030 0.017 0.032

(0.000) (0.000) (0.003) (0.002)

Observations 201 205 196 205

R2 0.637 0.54 0.414 0.466

Test 1 0.47 1.17 1.99 0.54

p_value (0.495) (0.281) (0.160) (0.464)

Test 2 21.79 10.2 8.12 7.56

p_value (0.000) (0.000) (0.000) (0.001)

This table reports estimation results of Eq. (3) and analogously for the other measures of
asymmetry from 1988:02 through 2010:12. The dependent variable is the monthly excess returns
of value weighted portfolios in U.S. dollars. Explanatory variables are on Table 2. Asymmetry
measures are natural gas price increases (gasp), natural gas price decreases (gasn), net natural gas
price increases (ngpi), net natural gas price decreases (ngpi), scaled natural gas price increases
(sgpi), scaled natural gas price decreases (sgpd). Robust p-values are reported below coefficients.
Test 1 corresponds to the null hypothesis H01 : boilp ¼ boiln and test 2 to H02 : boilp ¼ 0 and
boiln ¼ 0, and analogously for the other measures of asymmetry
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8 Conclusion

This work analyzes the drivers of firm value along the value chain of the oil
industry. We find some similarities in the upstream and downstream sectors, such
as, similar levels of sensitivity to market returns and oil price shocks. The upstream
sector is also sensitive to exchange rate shocks, while oil related services and
machinery have greater sensitivity to the state of the market and the price of oil as
revenues are driven by the production of oil and natural gas.

With regard to asymmetric effects, we find that the upstream and downstream
sectors are affected differently by positive and negative oil price variations, which
suggests that firms are able to capture the value generated by oil price hikes.
Notwithstanding, in the upstream segment the evidence supporting asymmetric
effects of oil is more consistent across different measures and time subperiods. It
might be that the petroleum refining industry also shows asymmetric effects
regarding oil subproducts such as gasoline, but this remains for future research.
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Cost, Risk-Taking, and Value
in the Airline Industry

Paul A. Laux, He Yan and Chi Zhang

Abstract This chapter develops empirical measurements of the shape of airline
firms’ cost functions as they relate to price variation of oil-based inputs and outputs
during the 1998–2009 periods. Using the estimates, we assess the value-added
potential for hedging and risk taking with respect to oil prices. We find reasons to
believe that the potential value-added of hedging fuel costs with oil derivatives is
somewhat limited on average, but that it varies across the business cycle. Our
evidence helps explain why, although many airlines hedge, also many do not hedge,
why hedging is incomplete, and why hedging intensity varies over time within
many airlines.

Keywords Airlines � Risk management � Hedging � Industry studies

1 Introduction

This chapter develops empirical measurements of airline firms’ cost functions as
they relate to price variation of oil-based inputs and outputs during the 1998–2009
periods. Using the estimates, we assess the value-added potential for hedging and
risk taking with respect to input prices.
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The potential for corporate risk management to add value is a classic issue in
finance. Under the perfect markets reasoning of Modigliani and Miller (1958), that
potential is nonexistent because investors can replicate the firm’s risk management
choices and arbitrage away any benefits. In more realistic settings, Smith and Stulz
(1985) show that concavity in the relationship of a firm’s value with respect to a
particular source of uncertainty opens the door to valuable risk management.
Intuitively, if the probability-weighted downside effect on value when the uncer-
tainty is resolved unfavorably more than offsets the upside effect of favorable
resolution, then it can make sense to lay off the risk and take the value outcome
associated with the expected value outcome of the risk driver. Mathematically, the
point follows from Jensen’s inequality.

Smith and Stulz (1985) focus on specific examples such as progressive corporate
tax codes (the tax bite is disproportionately greater on the pre-tax profits upside)
and financial distress costs (the distress costs are disproportionately greater on the
profits downside). Investors cannot replicate the firm’s managed tax or financial
distress risk positions.1 The converse reasoning also applies. If the probability-
weighted upside effect on firm value when a risk is resolved favorably is greater
than the probability-weighted downside effect if the risk is resolved badly, then
expected value would not be enhanced by hedging. In that instance, it is better to let
the risk take its course and accept the average results over time.

Froot et al. (1993) powerfully extend this intuition. Assuming that the avail-
ability of internal financing best enables firms’ optimal real investment plans, then it
is valuable to hedge risks that tend to restrict internal funds available at times when
investment opportunities are apt to arise. The key to valuable risk management is
the correlation between the risk source and the firm’s investment opportunity set. A
positive correlation between the value-effect of the risk outcome and the investment
opportunity set implies that hedging can be beneficial. In other words, the value of
hedging arises from an increased cost of capital (i.e., due to the need to finance
externally) if risks turn out badly. The managerial implication is this: the cost
drivers that ought to be hedged are the ones that bite harder at times when important
investment projects ought to be undertaken. Similar to the Smith and Stulz (1985)
reasoning, non-linearities are seen to be at the heart of the potential for value-added
risk management. Under the Froot et al. (1993) logic, the non-linearities operate in
the sense of shifts in the intensity of risk exposures across economic states. Firms
with cost functions that are effectively convex because of greater sensitivity to a
detrimental risk source during high-cost times would then benefit from hedging.

This chapter works directly from these seminal arguments to characterize the
possibilities for and achievement of value-added risk management in an important
industry facing a specific risk. Our focal industry is commercial airlines. Airlines

1 Even so, if the firm does enact hedges, the value added would be reduced to the extent that the
risk being hedged corresponds to a priced factor in the security markets. Effectively, the firm
would need to pay an insurance premium for the risk it lays off; this effect would be offset if the
firm's reduced-risk profile results in a lower discount rate being applied to its cash flows by the
market.
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are an interesting case because the direct effect of a clearly identifiable and
economically predominant source of risk resides squarely within the cost function.
There is no offset in revenue functions (unlike for oil producers, for example) so
value effects from costs feed directly into equity value.

Most directly, the risk source is fuel costs. Jet fuel is, of course, a derivative
product of crude oil, so airlines indirectly face oil price risk. There are reasons to
expect that airlines’ fuel costs might be convex in oil price (i.e., absent any
hedging). For example, oil prices, being generally pro-cyclical in recent times, tend
to be highest when airline demand is strong. Airlines are therefore apt to use more
high-priced fuel than low-priced fuel over time. Airlines can and do raise their
prices when fuel cost is high, of course, but this offsetting benefit is limited by the
elasticity of demand. Second, because airlines cannot shift away from jet fuel, they
will bear higher costs when refining margins widen, which tends to happen at times
of high oil prices. Finally, cost functions could be convex to the extent that fuel cost
spikes correspond to upturns in economic activity overall (due to demand pressures
on oil-related prices), straining airlines’ capacity to deliver their services given their
level of fixed capital.

On the other hand, it is also plausible that cost functions might be concave. For
example, cost functions would be concave to the extent that airlines can use oil
price spikes as leverage to negotiate reductions in other cost factors (including by
invoking bankruptcy). Moreover, if oil price shocks are an underlying cause of
recessions, as described by, for example, Hamilton (2008) and Kilian (2008), then
times of high oil prices might correspond to a weak investment opportunity set.
Finally, cost functions could even be be roughly linear to the extent that airlines can
operationally offset these various economic effects of variable fuel costs. A priori,
then, it seems possible that either risk-taking or hedging with respect to oil prices
might be the value-added recommendation for airlines.

Airlines do make fairly extensive use of energy-linked futures, forwards, options
and swaps, suggesting that they are actively managing their operational risks with
financial instrument hedges.2 Importantly, however, it is not typically practical to
hedge jet-fuel exposure directly, except perhaps over short horizons. In practice,
airlines resort to hedging via derivatives linked to other oil markets, such as crude
oil or refined distillate such as heating oil or even gasoline, all of which exhibit
greater liquidity over a larger range of expiry dates. The implication is that airlines
necessarily remain exposed to the basis risk. The essence of their basis risk in the
case of jet fuel is essentially the time-profile of the refining margin between crude
and jet fuel, or the time-profile of the price differential between other refined
distillates and jet fuel. Thus, it is far from clear that risk management with oil
derivatives is sure to add value.3

2 Airlines typically state in annual reports that their derivatives use is for hedging purposes.
3 News reports sometimes emphasize this point of view. For example, Freed (2012) reports that
hedging losses turned a strong second quarter of 2012 operating profit into a loss overall for Delta
Airlines.
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Perhaps consistent with limits to value-added hedging, there does not seem to be
any standard for hedging within the industry. Instead, hedge ratios vary across firms
and time. News reports often put airlines hedging activities in the 20–40 % range
[for example, see Peterson and Reiter (2008)]. Morrell and Swan (2006) report on
hedging at a selection of airlines and over time. In 2004, hedge ratios varied cross
sectionally from 0 to 82 % of fuel purchases. Over 1989–2003, American Airlines
hedge ratio varied in the time series from 12 to 48 % of fuel purchases. The
International Air Transport Association (IATA), which represents airlines around
the globe, estimated that carriers would hedge 30 % of their fuel purchases in 2011,
up from 10–20 % the previous year. Additionally, airlines are said to sometimes be
discouraged from hedging on account of poor outcomes due to basis divergence
between jet fuel and oil-related prices in the specific hedging markets [see, for
example, Blas and Clark (2011) and Credeur et al. (2011)]. Morrell and Swan
(2006) quote the CEO of British Airways as saying in a news report that no
“sensible airline” believes hedging saves on fuel bills. For a recent industry-
oriented discussion of airline hedging practice, considering both pros and cons, see
Rivers (2012).

Building on the core ideas from risk management theory, our goal is to assess the
potential for value-added oil price hedging/risk-taking in the airline industry, and
develop evidence on whether the potential is being realized. To accomplish this, we
use data on airlines’ physical fuel consumption, market prices, reported fuel costs,
and reported non-fuel costs. We estimate three industry-level cost functions for
airlines. Specifically, these are unhedged fuel cost functions, fuel cost functions that
include important hedging effects, and total cost functions.4

Estimated unhedged fuel cost functions are concave in oil prices. To the extent
that our estimated functions fully capture the shape of actual cost functions, the
unhedged cost function estimates suggest that airlines’ values would benefit from
not hedging the risk.

A more conservative interpretation must acknowledge that our estimated func-
tions can only map the shape of estimated functions within the range of the data,
and hedging could be valuable because of the possibility of outcomes that are scarce
in our sample. Additionally, our simple cost function specifications might be
incorrect. To the extent that excluded influences correlate to the oil price factors we
do include, actual cost functions could be less concave than we estimate.

Even acknowledging all this, a comparison across unhedged and hedged cost
functions is highly informative. Our estimates imply that airlines do change the
sensitivity and shape of their fuel cost functions by hedging. Unhedged fuel cost
functions are flatter and less concave than hedged fuel cost functions. Moreover, oil
price variation explains only about half as much of the variation in hedged fuel

4 We measure costs relative to the asset size of the firm. Not only does this facilitate comparisons
across airlines, which vary dramatically in size, but it also makes our estimates more economically
meaningful. To the extent that a firm can adjust its asset base over time to match the rise and fall of
its dollar costs, then it essentially already hedged against changes in the investment opportunities
that those assets represent.
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costs as compared to unhedged costs. Total costs are even less closely linked to oil
prices. While it is natural that oil would explain less variation in total costs, given
that non-fuel costs are also important, the distinction goes even further in that it is
difficult to reject the null hypothesis of no oil price linkage. The clear implication is
that both hedging activities and outcomes on non-fuel cost factors tend to offset the
natural effect of oil prices on airlines unhedged fuel costs.

Further evidence consistent with this interpretation of strong hedge effects on
costs comes from estimates of quarterly seasonals in airlines’ oil costs. Controlling
for other factors, unhedged fuel costs are significantly higher in the third quarter
(summertime) versus any other quarter of the year. This makes sense, as the press of
business is traditionally greatest in the summertime, and it seems natural that
resources usages would be stretched beyond their most efficient levels. In contrast,
our evidence reveals no such pattern in hedged fuel cost or total cost. The impli-
cation is again that hedging tends to offset the natural effects of oil price on
unhedged fuel cost.

We also find that airline costs tend to increase at the same time they invest the
most in fixed capital. This suggests that management perceptions of investment
opportunities are more optimistic during high-cost periods. This is about equally so
whether we consider unhedged fuel costs, hedged fuel costs, or total costs. To the
extent that growth in fixed capital reflects perceived investment opportunities, this
comparison means airline managements do not hedge, on average, in a pattern that
corresponds to changes in investment opportunities. Since airline investment
opportunities may vary business conditions over time and across different classes of
firms at a point in time, we double-check that our findings are robust to including
controls for GDP and market share. We find the results robust.

We develop additional evidence to understand the potential for value-added by
risk management, and indications as to whether the potential is realized, by con-
sidering airlines cost functions across regimes that likely correspond to different
investment opportunities. Specifically, we consider high versus low oil price
periods, and expansion versus contraction macroeconomic phases. If recessions
tend to follow high oil price periods [see, for example, Hamilton (2008); Kilian
(2008)], then high oil price periods signal weak investment opportunities. In
principal recession periods themselves might correspond to weak opportunities (if
the bad conditions are secular) or strong ones (if the bad conditions will soon lead
to strong business conditions) or even a mix (if different recessions are, in fact,
qualitatively different). Campbell et al. (2012) study recent decades from this point
of view. Taking stock market booms-busts as a rough economic indicator, their
evidence shows that downturns in the early 1990s were most connected with weak
market-wide cash flow news (i.e., secular bad news). For a short time in early
2000s, downturns were most connected with weak market wide sentiment (i.e.,
temporary bad news). In the late 2000s, the cause was again bad cash-flow news.
Thus, during our sample period most stock market downturns were linked to weak
cash flow news, a secular problem that does not sow the seeds of its own reversal.
Airlines are a very pro-cyclical industry. Viewed through this lens, recessions
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during our sample likely correspond mostly to weak investment opportunities for
airlines.

We find that unhedged airline cost functions are less concave and less sensitive
to oil price during sustained periods of high oil prices, and similarly during
recessions. From the reasoning above, airlines investment opportunities were
probably weak during both high oil price times and recession times. The implica-
tion for risk management from this second point of view [i.e., motivated by Froot
et al. (1993)-type reasoning] contrasts somewhat with that obtained from simply
examining the curvature of the cost function [i.e., motivated by Smith and Stulz
(1985)-type reasoning]. Unhedged airline cost functions depend most on oil during
strong investment opportunity periods–i.e., when low cash flows are most likely to
constrain important future-oriented choices. The strength of this implication is
offset somewhat in that unhedged cost functions are also the most concave at such
times. We can see why different airlines might choose differently on risk man-
agement, and why the intensity of industry hedging would vary over time. In fact,
hedge fuel cost function are different during recessions (versus expansions), but are
not different during high oil price periods, consistent with such heterogeneity in
managers’ choices.

Overall, the statistical evidence suggests that airlines can and do enact opera-
tional and hedging mechanisms for dealing with price variability that blunts the cost
effect of fuel price spikes, on average. It is less clear that these activities add to
value. On average, the shape of estimated cost functions suggests that it would be
better not to hedge, though our estimates also suggest that hedging at some times
and under some conditions can be more beneficial. Our results help provide an
explanation for the fact that airlines tend not to fully hedge their fuel costs, and why
their hedging behavior shifts around over time, even though a variety of fairly
appropriate financial contracts are available.

A related strain of the empirical corporate risk management literature focuses on
firms’ use of derivatives. Such studies assess the extent to which firms use deriv-
atives or whether that use succeeds in reducing risk. Overall, these studies establish
extensive derivatives use, but findings of value added are, in general, less con-
clusive. Some of these studies have focused on airlines in particular. For example,
Carter et al. (2006) have investigated the relationship of stock price to reported
derivatives usage and firm’s 10-K statements about the extent of hedging, finding
the relationship to be positive. Another strain focuses on risk exposures, assessing
whether firms show stock price exposure to specific and intuitive sources of risk
(gold for gold miners, exchange rates for international firms, and so on). These
studies are informative about firms actions and their outcomes. They have limited
potential, however, to inform about the potential for risk management to add value.

We are not the first to apply the risk management theory to understand cost
functions as we do. Our paper adds to a strain of the risk-management literature,
exemplified by Mackay and Moeller (2007), that takes a very different and more
direct approach from the papers mentioned above. Mackay and Moeller use the core
risk management theory to motivate an extensive and insightful set of measure-
ments along the same line as in our study, but for oil refiners. Our contribution for
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airlines is useful for the reasons outlined above, and additionally because it makes
use of a special industry dataset for the first time we are aware in the literature. It is
this dataset that allows us to compare unhedged costs versus hedging-influenced
costs. At the same time, the nature of the dataset limits us from using econometric
methods as sophisticated as Mackay and Moeller’s, we are more possibly subject to
statistical biases, and thus our conclusions must be treated with some caution.

The remaining sections of this paper provide an informal discussion on the
economics of hedging in the airline industry, describe our data set, report and
discuss our empirical results, and conclude, respectively.

2 Airline Costs and Airline Risk Management

Airlines face substantial risk from many external sources, including jet fuel price
volatility, interest rate and foreign currency changes, and macroeconomic revenue
drivers. Among these, fuel price risk may be the most severe, at least over short
periods, for two reasons. First, fuel prices are highly volatile. Second, fuel is the
largest or second largest cost for most airlines. Due to the competitiveness of the
industry, it is not always possible to pass higher fuel prices on to passengers by
raising ticket prices over the short run. This suggests that fuel risk management
might be a central issue for airlines. Airlines that want to stabilize operating
expenses and assure bottom line profitability might seek to hedge fuel price
exposure. Airlines that hedge could do so using either operational hedging mech-
anisms or financial derivatives mechanisms.

Operational hedging mechanisms include engaging in long-term contracts for
fuel purchases, attempting to raise ticket prices in response to high fuel prices, and
flying slower or less into-the-wind to preserve fuel when fuel is expensive. Airlines
may also engage in some operational practices that have the same effect as forward
contracts. For example, some airlines negotiate fuel pass-through arrangements
with other airlines, whereby a larger airline assumes the risk of fluctuating fuel
prices and shields a smaller airline. One major airline has even acquired a refinery
as an operational hedge (Staff 2012).

Financial derivatives hedging mechanisms include futures, options, swaps and
collars on jet fuel or other petroleum products such as crude oil, heating oil, or even
gasoline. Hedging with jet fuel derivatives tends to be limited in quantity and time-
horizon. Among the reasons are that over-the-counter derivatives do not trade in
sufficient quantities to hedge all of the airlines jet fuel consumption, and jet fuel
derivatives markets are rather illiquid in general. Further, no exchange-traded
derivatives for jet fuels exist in the United States.

When refiners process crude oil, the main products are gasoline, middle distil-
lates (heating oil, diesel fuel, and jet kerosene) and residual fuel oil. Since jet fuel is
refined from crude oil, and heating oil is from the same part of the barrel during
refining process, both of them are among the top choices to hedge jet fuel prices.
Historically, most U.S. airlines have tended to hedge their exposure to energy costs
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mostly through the Chicago Mercantile Exchange futures contract on West Texas
Intermediate crude and the NYMEX futures contract on heating oil. Options have
been somewhat less popular, perhaps because of the cash outlay required to cover
option premia. Most hedging is in plain-vanilla contracts, though exotics do exist.
Such hedges are not perfect, and significant basis risk remains. For example, in the
late 2000s, jet fuel tended to track more closely to Brent crude prices, even though
U.S. airlines’ hedging was concentrated in derivatives settled to West Texas
Intermediate crude prices. Getting the right mix of hedging strategies is claimed to
be especially difficult.

As discussed in the introduction, finance theory indicates that risk-management
with financial contracts and instruments can have value-added under at least two
circumstances. First, risk management theory implies that the potential for that risk
taking (hedging) to add value when cost functions are concave (convex) in the
underlying source of risk, all else equal. Second, theory implies that valuable risk
management adjusts the correlation of internal cash flows to investment opportu-
nities to free the firm from dependence on more-costly external capital. Mackay and
Moeller (2007) provide a rigorous example of the application of this theoretical
reasoning to assess the potential for hedging value-added in an industry. They study
oil producers over the period 1985–2000 to assess the extent to which cost, revenue,
and profit functions are concave or convex in the price of oil. They report a two-
edged potential for value added hedging in that both revenue and cost functions are
concave. The recommendation for hedging policy, based on theory, would therefore
be: hedge the revenues and leave the costs unhedged. Our study is an application of
their basic idea to the airline industry. Because the oil risk exposure of the airline
industry is essentially on the cost side, we focus there.

Some existing evidence suggests that such risk management adds value for
airlines. For example, using a panel-data design, Carter et al. (2006) assess the
relation between airlines hedging intensity, as reported in financial statements, and
Tobin’s q (an index of firm value in excess of replacement cost). They conclude that
airline firm value is positively related to hedging of future jet fuel needs. Their study
includes controls for investment opportunities and derivatives usage overall.
Studies like this would seem to establish that hedging is valuable in airlines. Yet
airlines do not uniformly or completely hedge their fuel risk, according to news
sources such as those referenced in the introduction. And there seems to be some
pattern to the time series variation, where hedging increases as oil prices rise. For
example, hedging was said to be more widespread during the pre-financial-crisis
global run-up in oil prices, and many airlines ceased to hedge after prices fell in the
crisis.

Other research (not focused on airlines) finds that it can be difficult to conclude
whether firms are hedging or speculating using data that selectively characterizes
their actions (e.g., derivatives use). As argued in, for example, Faulkender (2005),
the problem is that a firm’s risk position is the amalgam of its real and financial
market activities and choices. Focusing on, say, derivative market activities might
mask other offsetting choices. In airlines, there is some reason to think that success
in real activities correlates negatively to oil prices as far as costs are concerned,
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which alleviates some concerns from this perspective.5 However, the point only
pertains to the cost side. If high oil prices and strong economic activity tend to
coincide, then airlines total value may be more positively correlated with oil prices.
This reasoning is another motivation for our focus on the potential for risk man-
agement value added from the cost side.

Finally, it is worth noting that although classic empirical results in finance such
as Chen et al. (1986) suggest that oil price risk is not a priced factor, some recent
results such as Chiang et al. (2012) provide contrasting evidence. If systematic oil
risk is priced in the financial markets, then widely-held firms that hedge it may be
forced to pay as much for the insurance as it is worth to their investors. The best
chance to understand the value of hedging might then be in private firms, whose
owners may be less fully diversified. There the benefit might be perceived to
outweigh the cost. One attractive feature of our data set is that it includes private
firms. With this in mind, we turn to a discussion of our data.

3 Data

Our central data source is from the Research and Innovative Technology Admin-
istration (RITA), which provides a database suite organized by U.S. Department of
Transportation. As regulated carriers, airlines are obliged to report a wide variety of
operating, safety, ownership and financial data to the Department of Transportation
on a quarterly basis. Among various databases from RITA, the central one for our
purpose is the Air Carrier Financial Reports (Form 41 Financial Data) database,
which provides detailed financial information on public and private airline com-
panies. We have downloaded quarterly balance sheets (Schedules B-1 and B-1.1)
and quarterly income statement (Schedules P-1.1 and P-1.2). In addition, we have
downloaded quantity data on airlines’ jet fuel usage. After consolidating the various
tables from RITA and eliminating those with extensive missing data, our sample
includes 141 airline companies. The sample, based on the availability of RITA data,
covers the first quarter of 1990 through the fourth quarter of 2010.

The RITA data provides two special advantages for a study like ours. The first is
universality of coverage. All commercial airlines in the U.S. are regulated by the
Department of Transportation, and must report their data. This means that we are
able to include unlisted firms and smaller airlines that would be missed using other
data sources. Second, the RITA data includes information on physical fuel usage as
well as dollar fuel expense from financial statements. With this extra information,
we can compute the fuel cost airlines would face if fully unhedged. Thus, we can
assess the fuel cost risk that is inherent in their production process by calculating

5 That is, if oil price is high at the time of high demand by Western macroeconomies, and
therefore high demand for air travel also.
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their “unhedged fuel cost” as the product of physical fuel usage and the market
price of jet fuel.

From RITA financial statements, we also obtain another measure of fuel cost–
one that is affected by hedging. For convenience, we will refer to this as the
“hedged fuel cost”. Our terminology should be understood in light of GAAP hedge
accounting rules. Generally Accepted Accounting Principles dictate that derivative
assets, such as futures, options, and swaps on oil and oil products, should be
marked to market on a regular basis. Gains and losses on every position in such
assets must be reflected directly on the income statement, unless the specific
position is pre-qualified for special hedge accounting treatment, and unless the
position is periodically tested to assure that it continues to qualify. If the formal pre-
qualification and the continuing qualification requirements are satisfied, then the
gains or losses due to the derivative can be held away from the core of the income
statement, and do not immediately affect net income (for example, being reflected in
the broader “other comprehensive income” category). Under hedge accounting
treatment, the qualified derivative asset gains or losses flow to the net income only
at the same time as the realization of the cash flows that motivated the hedge. Thus,
under hedge accounting treatment, the income (loss) due to the fundamental
business activity associated with a hedge would be realized in income at the same
time as the loss (income) associated with the offsetting hedge (except to the extent
that the hedges are judged “ineffective”). The result of this offset is the source of our
term “hedged fuel cost”.

Obtaining hedge accounting treatment for derivative positions is a rigorous
undertaking for an airline. It requires a fairly sophisticated accounting function
within the firm, for hedge accounting is a matter of substantial focus for auditors.
Moreover, the accounting rules are complex, require frequent judgment calls and
testing, and were under more or less continuous development during the years of
our sample. Hedge accounting treatment tends to be used more by larger firms in
general, and this seems likely to be the case with airlines as well. Also, hedge
accounting treatment requires that the specific derivatives position can be linked in
advance to a specific risk, as qualified by specific rules. In practice, the asymmetric
nature of options gains and losses on some hedges (options, for example) often
disqualifies them from hedge accounting treatment because they do not track
symmetric cost effects sufficiently closely.

Importantly for our purposes, even without hedge accounting treatment, a firm
that is, in fact, hedging its fuel costs will have somewhat similar gain-loss offsets on
the income statement to the extent that it is partially hedged and that its current
derivatives realizations (i.e., positions unwound in the quarter) are similar to the
mark-to-market effects of its forward hedges. To the extent that firm’s hedging
intensity is fairly stable over time (quantities and directions) and that oil price
changes have a similar effect across the hedging term structure, a firm that follows a
consistent policy of hedging will experience cash flows and derivatives gains/losses
in offsetting directions. Thus, even for a firm that does not obtain hedge accounting
treatment for its positions, the reported fuel cost on the income statement will, to an
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extent, have the nature of a “hedged fuel cost”.6 For simplicity, we use this term,
rather than the more-fully-descriptive but more-cumbersome “hedging-affected fuel
cost”. The RITA data also provides each airline’s total cost, about which similar
points can be made.

Table 1 provides summary statistics on some of the central variables for our cost
function estimates. For Table 1 only, we report raw measures, i.e., not normalized
by asset value. From the table, it is apparent that airlines’ sizes differ substantially.
For the average firm/quarter over our sample period, sales revenue is about $500
million, with a standard deviation equal to about one-fifth of that average. The
smallest firm/quarter observation on revenue in the data is only $560 thousand, and
the largest is over $9 billion. Fuel usage also varies greatly, with a mean of almost
77 thousand gallons of jet fuel in a firm/quarter, a standard deviation of about 16
thousand gallons, but a maximum of 737 thousand gallons. Airlines’ market shares
(based on costs) vary from almost 0 to 4 %. The table also reports some other
relevant aspects of airlines’ financial statements, and similar wide variation is
apparent.

Because we are interested in characterizing costs and potential value effects for
the industry overall, we need some way of comparing and summarizing across these
disparate-sized firms. Specifically, we need a normalization factor to use in
regression analysis. Otherwise, regression error variances would vary according to
firm size, violating standard assumptions. We choose to normalize by total asset
value, so that the various types of costs are all expressed per thousand dollars of
asset value in the regression data. This choice is driven by our purpose. We want to
understand how the nature of cost functions and their non-linear sensitivity to oil
prices might impact firm value. The most appealing concept of value in this setting
is Tobin’s q, i.e., firm value per unit of replacement value. With a total assets
normalizing factor, we are measuring costs on a similar basis.7

4 Cost Function Curvature and Sensitivity to Oil Prices

In this section, we present and discuss the implications of estimates of cost
determinants for our three categories of airline cost: unhedged fuel cost, hedged fuel
cost, and total cost. We estimate a simple specification of costs, as normalized by
total assets. We chose this specification on economic grounds, but also considering

6 There is the logical possibility that it is an over-hedged fuel cost, i.e., that the total effect of the
realizations and the marking-to-market takes cost exposure in the opposite direction from its
natural one.
7 Seat-miles, or the number of miles flown times the number of passengers carried on a flight,
summed across all flights, is a commonly-used normalizing factor in the industry. However, a seat-
mile normalization would leave a systematic firm-size effect, for smaller airlines inherently have
fewer seat-miles across which to spread costs that do not vary directly with business activity (such
as headquarters costs and even lumpy aviation equipment costs).
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what can be implemented using the RITA data. As noted above, the data presents a
special opportunity to include all US airlines, including privately owned ones, but,
at the same time, does not provide for such a broad variable coverage as if we were
to restrict the sample to large public companies.

The key cost factors of interest for our purposes are oil price and the square of oil
price, including squared oil price is a simple way to allow for non-linearly oil
sensitive costs. We also include some additional cost determinants in the specifi-
cation based on several economic considerations. Bolton et al. (2011), in recent
research, reason that firms’ cash holding and liquidity management policies interact
with risk management to determine firm value. Therefore, we also include a
measure of the growth in working capital as a control variable in our specification.
Chen et al. (2011) argue that executive compensation is another important element
of the linkage to value. Given the nature of our sample, we do not have compen-
sation data available. Relying on the evidence in Emans et al. (2009) that com-
pensation scales up with firm size and at a rate different than costs, we include a
measure of the growth in fixed capital in our specification. Working capital and
fixed assets also make sense in the cost specification on microeconomic grounds.
Working capital relates to the firm’s efficiency, and fixed capital relates to econo-
mies of scale. Fixed costs are apt to increase when management is optimistic about
business opportunities, and so this regressor also ties to hedging considerations.
Finally, because the airline industry is subject to large seasonal swings in activity,
we include in our cost specification dummy variables for the first, second, and third
calendar quarter of the year, leaving the fourth quarter effect to be subsumed in the
constant term. Because we use asset-scaled versions of all our measures in
regressions, henceforth, we will use italics to indicate when we are referring to a
variable that is normalized by assets.

4.1 Base-Case Model Estimates

Table 2 reports regression estimates for our base cost model as applied to the three
cost measures, Unhedged fuel cost, Hedged fuel cost, and Total cost, respectively,
in columns (1)–(3). Panel A reports OLS estimates with heteroskedasticity and
firm-cluster robust standard errors. In Panel A, we report estimates for all regres-
sors, to fully catalog the base case findings.

The estimated coefficients on Oil price are positive for all three cost functions,
and estimated coefficients on Squared oil price are negative for all three cost
functions. Thus, our estimated cost functions all tend toward concavity in oil price.
Economically, the suggestion is that hedging the cost effects of oil price variation is
apt to be counterproductive for value: the extra cost incurred for high oil price
outcomes is more than offset with the cost savings for low oil price outcomes.

Several caveats are appropriate. We do have fully-specified cost functions, so we
cannot say for sure that costs are literally concave in oil. There might be omitted
variables, under the control of the firm, which happen to correlate with the price of
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Table 2 Regressions of airlines costs on oil prices

Central variables (1) (2) (3)

Panel A. OLS estimates

Central variables Unhedged fuel cost Hedged fuel cost Total cost

Oil price 2.825 1.815 0.538

(3.584) (1.680) (0.839)

Squared oil price −0.266 −0.156 −0.068

(−2.764) (−1.157) (−0.874)

Q(1) 0.050 0.022 0.020

(1.809) (0.639) (1.159)

Q(2) 0.040 −0.013 −0.005

(1.448) (−0.377) (−0.352)

Q(3) 0.063 −0.006 0.003

(2.594) (−0.203) (0.224)

Δ Fixed capital 1.884 1.810 2.546

(3.081) (2.189) (7.838)

Δ Working capital 0.520 −0.145 −0.391

(1.024) (−0.277) (−0.933)

Constant −2.673 −7.393 −2.041

(−1.675) (−3.403) (−1.554)

R-squared 0.101 0.048 0.011

F-test (oil effects) (29.08) (11.05) (0.41)

[0.00] [0.00] [0.66]

Observations 2,607 2,607 2,607

Panel B. Selected panel regression estimates

Oil price 2.861 2.193 0.622

(5.147) (2.312) (1.222)

Squared oil price −0.258 −0.188 −0.064

(−3.779) (−1.595) (−1.040)

Q(1) 0.034 0.013 0.008

(1.352) (0.464) (0.604)

Q(2) 0.034 −0.002 −0.008

(1.384) (−0.056) (−0.639)

Q(3) 0.044 −0.021 −0.010

(1.835) (−0.799) (−0.903)

Δ Fixed capital 1.848 2.305 2.178

(2.986) (4.527) (5.616)

Number of airlines 95 95 95

R-squared 0.294 0.157 0.057

F-test (oil effects) (62.21) (33.08) (2.02)

[0.00] [0.00] [0.14]

Observations 2,607 2,607 2,607
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oil within our sample. Therefore, we will focus more on comparisons of the extent
of the concavity accords the various types of costs. The assumption is, then, that
any such biases are stable across the cost categories, which seems reasonable.

Comparing the coefficients on Oil price and Squared oil price across the cost
function types in Panel A, both the size and statistical significance of the estimated
coefficients are attenuated. Additionally, the regression R-squared statistics decline
across the cost function types. Finally, the Panel reports F-tests as to the combined
influence of the two oil price regressors across each cost type, with the finding that
the combined effect is statistically significant for Unhedged fuel cost and Hedged
fuel cost but not for Total cost. Overall, the tendency of the cost function toward
positive slope and concavity is smaller and weaker as we move from considering
Unhedged fuel cost to Hedged fuel cost to Total cost. The implication is that firms
in the airline industry, on average, use hedging to offset the sensitivity to oil price
that is clearly apparent in their unhedged fuel costs. This is so to some extent as it
impacts their hedged fuel costs, and to a more complete extent as it impacts their
total cost. Given that the exposure offset involves a concave cost function, this may
not be value enhancing.

Coefficients on the seasonal dummies are informative about hedging also. The
summer (Q3) coefficient is significantly positive in the Unhedged fuel cost
regression in Panel A, but not for the other cost types. Summer is the time of year
when airlines’ passenger flow, and therefore fuel demand, is the strongest. It is not
surprising that the demand pressure from the prime jet-fuel consuming industry
would then lead to higher unhedged fuel costs in the summer: the industry would
not be expected to operate its jets most efficiently at its time of greatest strain. These
higher costs are apparently offset by financial or operating hedges before impacting
Hedged fuel cost or Total cost, again evidence of industry-wide hedging on
average.

The coefficients on one of the control variable provides interesting additional
information about airline’s hedging choices. The coefficients on Δ Fixed Capital in
Panel A are not statistically significant for either fuel cost measure, but are positive
and significant in the Total cost regression. This suggests that airlines’ non-fuel
costs, but not their fuel costs, are highest at the time they invest in their fixed
capital. In the view of airlines’ managements, and based on these OLS results, it
does not appear that capital investment opportunities are strongest at the time of
high fuel costs.

To check the robustness of these findings to reasonable variations in the esti-
mation method, Panel B reports panel regression estimates of the same specifica-
tion, now including firm fixed effects, with heteroskedasticty-robust standard errors.
Findings in Panel B thus rely on time-series effects within each airline, preventing
inference from being driven by differences in the economics of different airlines.
For example, results on Squared oil price effects like those in Panel A could result
if airlines that hedge happen to be ones that are also more flexible in dealing with
extreme oil prices. In Panel B and subsequent regression tables, we suppress
reporting on some control variables coefficients to save space and focus on more
central coefficients.
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Panel B reports that findings as to oil price effects and seasonal effects are robust
to this alternative method. The positive slope of costs with respect to Oil price is
somewhat more strongly statistically significant. However, findings on the rela-
tionship of costs to fixed capital changes are altered. The new finding is that all
categories of cost are positively correlated with fixed capital growth. This suggests
that management perceptions of investment opportunities are more optimistic
during high-cost periods. Because the link between oil prices and investment
opportunities is an important consideration under risk management theory, we are
motivated to investigate the robustness of our findings extensively.

4.2 Costs and the Firm’s Industry and Economic Situation

Strictly speaking, airlines’ cost functions are derived from the firm’s production
function, as conditioned on input prices. In the previous section, we have estimated
a version of such a cost function. In this section, we amend the specification to
include some useful additional conditioning variables regarding the firm’s situation
and environment.

We are motivated by the finding in the previous section that airlines’ costs vary
with their fixed capital growth. Capital investment choices are in turn motivated by
firms’ situation in the product market. This endogeneity or omitted variable issue
could have an effect on our estimates of oil price coefficients. To take an example
rooted in the time series of the data, during business cycle upswings, oil prices
might tend to be larger at the same time as airlines’ capacity is strained with
business. The strain might contribute to costs being higher at the time of high oil
prices. Alternatively, it might be the case that when firm’s product market positions
are stronger they are better able to enact flexibilities to deal with high oil prices,
leading to reduced costs. Overall, we want to be sure that our estimated oil price
cost sensitivity parameters are more than an reflection of these or other similar non-
oil effects. Therefore, in this section, we extend our estimates of cost determinants
to include recent GDP growth (as a business cycle indicator) and market share (as
an indication of firm’s product market success).

Table 3 reports the estimates of these extended cost functions. In Panel A, we
add GDP growth as a regressor, and in Panel B we additionally include Market
share as a regressor. Our findings above are not strongly driven by endogeneity/
omitted variable issues of the type just discussed. The key specific finding, common
to both panels, is that conclusions regarding the positive slope and concavity of the
various cost functions are unchanged. Unhedged fuel cost is increasing in oil price
and concave. Hedged fuel cost is increasing in oil price, but less reliably concave,
suggesting that hedging has reduced some extreme cost outcomes. Total cost is not
closely related to oil price, suggesting both that oil price sensitivity is offset in other
operational ways, and that there are many other costs drivers besides oil prices.

The table also reports that the specific coefficients on GDP growth and Market
share are at most weakly statistically significant, but that the statistical significance
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Table 3 Cost functions as extended to include the effects of business cycle and product market
situation

Central variables (1) (2) (3)

Panel A. Selected panel regression estimates of cost functions with business cycle effects

Central variables Unhedged fuel cost Hedged fuel cost Total cost

Oil price 2.540 2.018 0.406

(4.933) (2.382) (0.902)

Squared oil price −0.213 −0.163 −0.034

(−3.306) (−1.561) (−0.638)

Δ Fixed capital 1.863 2.313 2.188

(3.021) (4.561) (5.633)

GDP growth 2.974 1.625 2.002

(1.490) (0.591) (1.596)

Constant −2.364 −8.050 −2.024

(−2.284) (−4.723) (−2.173)

Observations 2,607 2,607 2,607

R-squared 0.295 0.158 0.058

Number of airlines 95 95 95

F-test (oil effects) (57.03) (28.22) (2.38)

[0.00] [0.00] [0.10]

Panel B. Selected panel regression estimates of cost functions with business cycle and product
market effects

Oil price 2.584 2.079 0.434

(5.020) (2.463) (0.962)

Squared oil price −0.220 −0.172 −0.039

(−3.407) (−1.654) (−0.713)

Δ Fixed capital 1.858 2.306 2.184

(3.031) (4.618) (5.655)

GDP growth 2.970 1.618 1.999

(1.494) (0.591) (1.603)

Market share 27.073 37.578 17.283

(1.305) (1.597) (1.736)

Constant −2.552 −8.310 −2.144

(−2.485) (−4.926) (−2.289)

Observations 2,607 2,607 2,607

R-squared 0.297 0.161 0.061

Number of airlines 95 95 95

F-test (oil effects) (54.89) (26.66) (2.20)

[0.00] [0.00] [0.116]
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of the GDP growth effect is stronger for total costs than for fuel costs. This fits with
evidence and reasoning in Chung et al. (2012), who find that cost of equity in
unionized industries (a group that includes most airlines) has a countercyclical
pattern, suggesting that risk is also countercyclical. Their interpretation is that
unions are a serious impediment to operating flexibility, preventing firms from
making appropriate adjustments in downturns, and that investors rationally take into
account in discounting the stock. Pulvino (1998) shows that airlines bear the cost of
fire-sales of assets in financial distress, which also suggests that risk is counter-
cyclical to the extent that airlines incorporate systematic distress risk. Financial
distress might aggravate any negative effects of high oil prices: Morrell and Swan
(2006) cite their personal experience with airlines near or in bankruptcy, saying that
bad credit make hedging impossible. Our Total cost results are weakly consistent
with this reasoning, and the fact that we do not find such effects for fuel costs
reinforces the notion that labor costs are the underlying source of the effect.

4.3 Airline Costs and the Investment Opportunity Set

4.3.1 Oil Price Regimes

To this point, our results suggest that risk-taking regarding the sensitivity of fuel
costs with respect to oil prices would be more valuable on average than would
hedging. Nonetheless, it also seems that some of the overall sensitivity and con-
cavity of fuel costs with respect to oil prices is in fact offset by hedging. The overall
picture so far is not clearly value-maximizing. Our estimates to this point are on
average over time. In this section, we develop more time-and-condition specific
estimates of the industry cost function to establish if the time-pattern of hedging
improves the value-maximization picture. Anecdotally, the airline industry is
known to incompletely and sometimes sharply scales back the overall level of
hedging. Thus, in this section we are interested to learn if the mix of hedging and
risk taking time periods is appropriate for value maximization.

Industry-wide investment opportunities might be stronger or weaker in high oil
price regimes. Carter et al. (2006) provide evidence to suggest that airlines’
investment opportunities may be stronger during high oil price regimes. If so, then
such periods would be the times when hedging has the most potential to add value,
according to risk management theory (i.e., because bad cost outcomes during periods
of strong investment opportunities might mean failing to exploit them due to lack of
funds). On the other hand, Hamilton (2008) and Kilian (2008) have posited that oil
price shocks may be an underlying cause of recessions to come. In that case, times of
high oil prices might correspond to a weak investment opportunity set.

We estimate our full cost function (including the GDP and market share effects)
as augmented to allow for different oil price effects during high oil price regimes.
We accomplish this by adding two interaction-term regressors, both of which
involve an indicator variable for quarters in which oil price is above the sample
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median. High oil interaction is defined as the product of the indicator variable and
Oil price, and High oil square interaction is analogously defined as the product of
the indicator variable and Square oil price.

Table 4 presents the results of estimating this augmented cost function as a firm
fixed effects panel regression. In column (1) of the table, containing estimates for
the Unhedged fuel cost function, our earlier finding remains intact overall–costs are
increasing and concave in oil price, with a large and statistically significant positive
estimated coefficient on Oil price and a large and statistically significant negative
coefficient on Square oil price. The F-test statistics labelled “F-test (oil effects)”
tests the joint hypothesis that the Oil price coefficient and the Square oil price
coefficient are both equal to zero. That F-statistic is very large and soundly rejects
that null hypothesis.

At the same time, the High oil interaction is strongly statistically significantly
negative, and the High oil square interaction is strongly statistically significantly
positive. These coefficients indicate that the cost function leans more toward con-
vexity during high oil price regimes. The economic implication is that hedging might
be more beneficial during such times. Anecdotal stories from the airline industry
often suggest that hedging is more prominent during the high-price times, suggesting
that the time pattern of hedging may make sense. The statistical conclusion is
confirmed by a joint F-test on the interaction coefficients, labelled as “F-test (oil shift
effects)” in the table, which strongly reject the null of no oil coefficient shift.

Table 4 Cost regressions in different oil price regimes

Central variables (1) (2) (3)

Unhedged fuel cost Hedged fuel cost Total cost

Oil price 4.943 3.735 1.203

(4.236) (2.324) (1.696)

Square oil price −0.543 −0.399 −0.144

(−3.414) (−1.829) (−1.496)

High oil interaction −1.147 −1.034 −0.431

(−2.493) (−2.458) (−1.998)

High oil square interaction 0.267 0.237 0.100

(2.473) (2.399) (1.970)

Δ Fixed capital 1.835 2.294 2.178

(2.933) (4.550) (5.538)

Observations 2,607 2,607 2,607

R-squared 0.301 0.163 0.063

Number of airlines 95 95 95

F-test (oil effects) (58.18) (21.42) (2.83)

[0.00] [0.00] [0.64]

F-test (oil effect shifts) (3.39) (3.92) (2.20)

[0.04] [0.02] [0.17]
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The same effects follow through to the Hedged fuel cost column, where the
results are qualitatively similar but economically a bit smaller. This is consistent
with the idea that hedging has offset some of the oil sensitivity. No strong oil shift
effects are apparent for Total cost. Neither are strong oil effects present, similar to
our earlier findings.

4.3.2 Business Cycle Regimes

If airlines’ investment opportunities and the nature of their cost functions vary
across oil price regimes, it may also be the case that they vary across business cycle
stages (expansions and contractions in macroeconomic activity). In Table 5 we
show that this is exactly the case. Oil effect shifts in recessions are of a similar
nature to oil effect shifts in high oil price regimes. That is, the industry Unhedged
fuel cost function is less concave at such time, suggesting that hedging could be
more valuable at such times. If recessions are a time when financial distress risk is
enhanced, and/or when investment opportunities need to be taken for post-recession
gain, then this makes economic sense. We note that the industry Hedged fuel cost
function does not show such a shift, which suggests that the hedging policies are
adjusted across expansion and contraction regimes to offset their effects on the oil
sensitivity.

Table 5 Cost regressions in different macroeconomic conditions

Central variables (1) (2) (3)

Unhedged fuel cost Hedged fuel cost Total cost

Oil price 2.391 2.277 0.332

(3.449) (2.232) (0.636)

Square oil price −0.199 −0.204 −0.028

(−2.214) (−1.566) (−0.435)

Recession interaction −0.123 −0.127 −0.085

(−1.417) (−1.437) (−1.861)

Recession square interaction 0.025 0.030 0.017

(1.096) (1.371) (1.505)

Δ Fixed capital 1.843 2.290 2.174

(2.951) (4.485) (5.547)

Observations 2,607 2,607 2,607

R-squared 0.300 0.162 0.065

Number of airlines 95 95 95

F-test (oil effects) (49.78) (23.45) (1.33)

[0.00] [0.00] [0.27]

F-test (oil effect shifts) (4.24) (1.12) (4.49)

[0.02] [0.33] [0.01]
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5 Conclusion

Airlines are an important industry, and historically a somewhat unstable one.
Airline bankruptcies and recombinations are commonplace in the record. Addi-
tionally, airlines face serious commodity price risks in that jet fuel is one of their
largest cost factors. For an already-stressed airline, it seems that a fuel price spike
might take costs past a breaking point. Even for less-stressed airlines, there are
strong possibilities that a fuel price spike could occasion a more-than-proportional
cost increase, as the strain on the company’s operating capabilities increases, or
could lead to cash shortfalls that, in turn, cause an airline to pass by on beneficial
investments. The prima facie case that hedging might add value is easy to make.

When airlines hedge, it is typically using derivatives on oil products other than
jet fuel. Thus, they face significant basis risks. Additionally, airlines have available
a variety of operational risk-offsetting mechanisms that also might limit the mar-
ginal the value-added of financial hedges. Finally, airlines’ investment opportunities
vary over time and with the business cycle, as do oil prices. It seems likely that the
correlations among oil prices, fuel prices, investment opportunities, and business
conditions may not be stable over time. All these factor complicate airlines hedging,
and may limit its potential for value added.

Airlines do hedge significantly, but hedging is not universal within the industry
nor do any firms hedge fully. Further, hedging intensity varies substantially over
time for many airlines. We have developed empirical evidence for an explanation:
airlines’ cost structures are such that the value-added to hedging is limited. Spe-
cifically, fuel costs on average tend toward concavity, suggesting that cost savings
when oil prices drop exceed cost increases when oil prices spike. Furthermore,
airlines total costs apparently include significant operational hedges to oil prices and
significant basis differential effects between fuel costs and oil prices. We also
develop evidence that the value-potential for hedging varies across the business
cycle, helping to explain why airlines’ hedging intensity is dynamic.
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Part II
The Impact of Oil Shocks



Oil Prices, Volatility, and Shocks:
A Survey

Ulrich Oberndorfer

Abstract This paper surveys the literature on the economic effects of oil market
developments. It assesses the economic theory behind oil price impacts and presents
how the existing literature has analysed the link between oil markets—oil prices, oil
price shocks, and oil price volatility—and economic outcomes. This review doc-
uments the general consensus amongst economists that the significance of moderate
oil price movements is low if not inexistent, with clear impacts only present on
financial markets. However, the evidence for significant macroeconomic effects of
energy price shocks is strong, although methodological challenges such as causality
and endogeneity remain an issue.

Keywords Oil price � Oil price shocks � Oil price volatility

1 Introduction

In the last decade, the oil price has returned to the political agenda. Against the
background of price hikes and strong price volatility, international fora such as the
energy consumer organization International Energy Agency (IEA), the producer-
consumer-dialogue organization International Energy Forum (IEF) as well as G8
and G20 have been dealing intensively with oil market issues. Due to growing
evidence that trading activities may foster significant oil price volatility, energy
policy makers around the globe have been discussing whether and how stricter oil
market regulation can limit excessive oil price fluctuations.

The implicit assumption underlying the policy makers’ strong efforts is the
economic significance of oil prices and their variations. To put it in simple terms:
Oil prices are the focus of global policy because of their economic importance. In
this context and in the public debate in general, the emotional scientific dispute on
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the economic significance of oil prices has been ignored, however. Few economic
questions have been tackled empirically with such a variety of approaches
regarding measurement as well as period, region or market of analysis, leading to
numerous research articles, comments and replies—and to very different results
with regard to the estimated economic relevance of the oil price.

This paper surveys the broad literature available in the field. It assesses the
economic reasoning behind oil price impacts and presents how the existing liter-
ature has analyzed the relationship between oil market developments and economic
outcomes. Oil price shocks and oil price volatility are the buzzwords with regard to
such energy market developments. Definitions and measurement approaches of
those phenomena are presented in the paper. The focus on the economic side of the
oil to macroeconomy-relationship has been given to standard macroeconomic
indicators such as production, GDP and (un-) employment, as well as to financial
market developments.

The remainder of the paper is structured as follows: Sect. 2 presents popular
definitions of oil market—price, price shock and volatility—measures. Section 3
summarizes the theoretical background as well as empirical findings regarding the
oil-to-macroeconomy relationship, while Sect. 4 tackles theoretical and empirical
findings regarding the role of the oil price in financial markets. Section 5 concludes.

2 Oil Market Measures

2.1 Oil Prices and Oil Price Shocks

Previous literature has noted that the nature of the movements of oil prices must be
adequately addressed in order to accurately measure the economic effects of these
prices (e.g., Löschel and Oberndorfer 2009). In his pioneering work on the oil-to-
macroeconomy relationship, Hamilton (1983) makes use of an oil price series in 1st
differences.1 This approach is still common today, often in a log-differenced form in
order to avoid non-stationarity problems by differencing and to receive easily inter-
pretable estimation results (elasticities) by using logs. This series is constructed as

dloilt ¼ log oiltð Þ � log oilt�1ð Þ: ð1Þ

Here, the price of oil at time t is denoted oilt.
2 In the search for more adequate and

economically relevant oil price measures, Mork (1989) introduces the use of an
asymmetric oil price variable that is defined as

1 For the analysis of certain periods Hamilton (1983) makes use of detrended oil price change
variables.
2 Most authors use real oil prices, i.e., deflated nominal oil prices, in their analyses. In this sense, I
refer to oilt as a real oil price series throughout this paper.
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dloilpost ¼ max 0; log oiltð Þ � log oilt�1ð Þð Þ: ð2Þ

dloilpost gives the value of 0 if the oil price has decreased at time t compared to
t − 1. In contrast, if the oil price increased within this period, dloilpost gives the first
differenced logged oil price series (dloilt).

Hamilton (1996) proposes the net oil price increase (nopi) as a further definition
of an oil price variable. It compares the current price of oil with the maximum value
of the previous year rather than its value at t − 1 (i.e., at the previous quarter,
month, etc.) alone. If the current value of the oil price exceeds the previous year’s
maximum, the value of nopit is assigned to the change of the current value over the
previous year’s maximum. If the price of oil at the current point in time is lower
than it had been at any point during the previous year, the series is assigned the
value of zero.

nopit ¼ max 0; log oiltð Þ � max log oilt�1ð Þ; log oilt�2ð Þ; . . .; log oilt�mð Þð Þð Þ; ð3Þ

m gives the number of observed periods per year (i.e., in case of quarterly data,
m = 4, in case of monthly data, m = 12).

In the following, these three oil price variables are presented in real terms on a
monthly basis for the period 10/1973–01/2008. They give the oil price variables from
a German perspective, with the oil import cost data published by the EIA deflated
using the German consumer price index, and converted to domestic currency using
exchange rates from the time series database of Deutsche Bundesbank (German
Central Bank; based on data from the German Federal Statistical Office). The graphs
(Figs. 1−3) are based on the dataset used by Löschel and Oberndorfer (2009).

The graphs illustrate the measurement differences between the three oil price
variables. Both the oil price increase and the net oil price increase exclude oil price
decreases. In particular, the net oil price increase series, takes the value of 0 for
many points in time.
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The notion of oil price shocks is not very well defined. It is obvious though that a
simple oil price change series includes all price changes in the sample period,
whether or not they are shocks. If—as often argued—the economic effect of the oil
price varies, depending on whether the oil price is rising or falling, or whether it is
changing moderately or substantially in a shock-like manner, the inclusion of a
simple oil price change series in an empirical analysis may not accurately reflect the
effects of an oil shock.

As the term of a price shock is associated with the idea of rising prices, the
definition of the asymmetric oil price increase variable comes closer to the phe-
nomenon of an oil price shock. Finally, the net oil price increase may be the natural
empirical implementation of the oil price shock idea, although seen rather arbitrary
by some scholars. Only shock-like oil price increases, defined as one-year highs, are
considered. Accordingly, Hooker (1996) criticises nopi definitions as being ad hoc,
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although he admits being “sympathetic to the argument that oil price increases
which cancel out recent decreases have different effects than those which occur in a
relatively stable environment”.

2.2 Oil Price Volatility

The standard measure of oil price volatility at time (period) t, denoted as oilvolt, is
the estimation of the standard deviation of the oil price in a given period (cp., e.g.,
Ferderer 1996).

oilvolt ¼ 1= n� 1ð Þð Þ
Xq

p¼1

oilt;p � lt
� �2

" #0:5

; ð4Þ

Here, μt is the mean of the oil price oilt,p in time (period) t. n gives the number of
observations. t can be divided into subperiods from p = 1 to q, i.e.,
lt ¼ 1=qð Þ Pq

p¼1 oilt;p. E.g., in case oilvolt refers to monthly oil price volatility as
in Ferderer’s (1996) analysis, oilt,p could give daily oil prices. In this case, oilt,q
would refer to the oil price on last day q of the month t.

However, this standard estimation approach not only requires values for the oil
price to be available for period t (i.e., oilt), but also for shorter subperiods p (i.e.,
oilt,p). Depending on the choice of period and subperiod, this may prove to be
difficult, i.e., if period t represents days/daily observations. In such a case, it is not
possible to estimate the standard deviation unless intraday prices are available.

In order to cope with this data challenge, Oberndorfer (2009a) uses squared oil
price changes as an oil price volatility proxy variable.

oilspt ¼ oilt � oilt�1ð Þ2: ð5Þ

Squared price changes can be seen as good indicators of market volatility as they
give the deviation of the changes of the respective price from its mean (which is
often 0). However, volatility terms defined as squared changes, such as oilspt, are
positive by definition and therefore often exhibit highly significant positive means.
This means that these volatility variables do not indicate volatility surprises (or
unexpected volatility), i.e., volatility innovation, and they can be predicted to a
certain extent.3

This may be problematic in financial market analyses: If capital markets work
efficiently, only innovations, i.e., unexpected movements of selected systematic
variables, can affect them. The use of these volatility variables that at least partly

3 This is illustrated by the success of estimators of the ARCH-class (cp., e.g., Engle 2001) that
model volatility by dynamic processes.
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represent expected volatility could therefore induce an errors-in-variables problem
in financial market analyses (Chen et al. 1986).

In order to cope with this problem, Oberndorfer (2009a) additionally proposes
using errors of AR(K) processes of squared oil price changes as oil volatility
innovations (oilvit). This is done by estimating an AR(K) model for the squared oil
price change series.

oilspt ¼ aþ
XK

k¼1

bkoilspt�k þ et: ð6Þ

et is the noise disturbance with zero mean and variance vt
2. a and the bk, besides vt

2

are the unknown parameters that have to be estimated by OLS. The lag lengths
(K) of the respective regressions can be determined according to information cri-
teria such as the Bayesian Schwarz Information Criterion. et is the estimated error
term of the model and therefore the oil volatility innovation that can be used as an
explanatory variable within a regression analysis.

oilvit ¼ et:

According to Pagan (1984), the use of current levels of “generated regressors” such
as oilvit within a two-step analysis should yield consistent and efficient estimates in
an empirical analysis.

3 Oil Prices and the Macroeconomy

3.1 Theoretical Background

The theory on the macroeconomic role of oil prices is complex. Numerous channels
have been proposed and several survey articles exist. This section can only briefly
summarize the main channels of the oil-to-macroeconomy-relationship. An excel-
lent and extensive review is provided by Brown and Yücel (2002); I would like to
refer the interested reader to that manuscript for further information and references.
If not designated otherwise, the argumentation in this subsection is based on Brown
and Yücel (2002).

The traditional and most common explanation for macroeconomic oil price
impacts is the supply-side effect. It describes rising oil prices as an indicator of the
reduced availability of a basic input—oil—for production (e.g., Brown and Yücel
2000). As a consequence of this increased scarcity, prices rise in general, creating
inflationary pressure. Moreover, the growth of output and productivity are slowed
down. The decline in productivity growth lessens real wage growth, and increases
unemployment. Negative effects can be expected to be stronger if wages are
nominally sticky downward and therefore cannot fully adjust. Consumption
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smoothing on behalf of the consumers—decreased savings, increased borrowings—
together with lower output growth, may increase the real interest rate and, conse-
quently, the inflation rate. This effect can add to the direct inflationary impact of
rising oil prices. Thus, the supply-side effect is the best explanation for a double
negative macroeconomic effect of rising oil prices: slowed economic growth and
increasing inflation. The real balance effect is in some way related to the aspect of
consumption smoothing, suggesting that an oil price rise increases the demand for
money, leading to higher interest rates and, consequently, to lower GDP growth.
Additionally, the income transfer channel describes the shift in purchasing power
from oil importing countries to oil exporting countries when oil prices rise.
A reduction in demand for goods produced in oil-importing countries can be the net
effects.

Going beyond these simple mechanisms, at least four channels suggest oil prices
have an asymmetric effect on the economy. Accordingly, whereas oil price rises
would harm the economy, comparable oil price decreases would not (fully) com-
pensate for those effects, respectively. Firstly, it is argued that monetary policy that
fails to hold GDP constant can constitute such a channel if wages are nominally
sticky downward. Secondly, adjustment costs that occur within a sectoral shift in
the economic production or structure in general from energy-intensive to energy-
extensive sectors can play a role in this respect. Thirdly, asymmetric cost pass-
through in the oil-intensive production chain can be responsible or such asymmetric
effects. Finally, authors like Hamilton (1996) argue that historical oil crises have
been characterized by widespread concern about the price and availability of
energy, potentially causing irreversible investment decisions to be postponed in
case of oil price appreciations. This argument is referred to and is particularly
relevant in cases where the oil prices rise significantly, i.e., in so-called oil shock
situations (see also previous section). A similar channel is put forward by Bernanke
(1983), who argues that investment will be postponed in a situation of oil price
increases as firms attempt to find out whether or not the observed price rise is
permanent.

Similarly, Sauter and Awerbuch (2003) argue that since the 1980s oil price
volatility has had a more significant effect on economic activity than the oil price
level. In their assessment, however, no clear definitory distinction is made between
notions such as oil price volatility, oil price increases and oil price shocks. How-
ever, Sauter and Awerbuch’s (2003) claim seems to be motivated by the reasoning
of negative economic implications of oil shocks or asymmetric oil price effects.
They identify two different negative implications of oil price volatility, uncertainty
in investment and sectoral shift, which other authors also associate to oil price
increases or shocks (see above).

Generally, it is obvious that the above mentioned effects strongly depend on
fiscal and monetary policy reactions to oil price increases. Both can contribute to a
demand stimulation, e.g., in oil shock situations. However, there are good reasons to
believe in Brown and Yücel’s (2002) claim that oil price shocks “increase the
potential for errors in monetary policy”, as well as in fiscal policy. From a theoretical
standpoint, it is crucial in this respect whether money illusion is present or not.
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If so, an accommodative monetary policy has the potential to offset, at least partly,
losses in GDP growth that are due to oil price rises. A restrictive monetary policy
can aggravate negative macroeconomic oil price effects in such a setting. In the
absence of a money illusion, on the other hand, monetary policy is simply mirrored
by inflation without having real effects, apart from—potentially negative—impacts
of the inflation caused by monetary policy. Wage policy is a further aspect to be
observed in this regard; in contrast to the mechanism of the supply-side effect
described above, a so-called wage-price-spiral implying inflationary pressure can
evolve if nominal wages are set in line with observed (oil) price increases and if
prices in general reflect past wage increases (Barsky and Kilian 2004).

Several authors argue that macroeconomic oil price effects have diminished in
recent years, an occurrence that is difficult to describe with any of the above
mentioned channels at hand. It is perceivable, though, that (monetary and/or fiscal)
policy makers have drawn lessons from past oil crises and consequently improved
their responses to oil shocks. Moreover, as recent world oil consumption is par-
ticularly boosted by the dramatic gains in oil consumption outside the advanced
economies of the OECD, with the strongest gains in emerging (mostly Asian)
economies, the predominance of oil demand rather than supply shocks in recent
years can offer an explanation in this regard. The boost in oil consumption seems to
be driven, as well as accompanied by, an economically beneficial general rise in
demand for goods and services on the world markets.4 Such a stimulating effect can
at least partly offset the negative impacts of oil price rises.

A further reason why the oil price effect on employment could have diminished
over the past decades is the decline in energy intensity observed almost all over the
world (e.g., IEA 2011a),5 which could go hand in hand with a reduced oil price
impact on the economy (e.g., Barsky and Kilian 2004, or Schmidt and Zimmermann
2007). (Differences in) Energy efficiency could indeed constitute a central factor for
the specific macroeconomic effects in respective countries or regions and over time,
with efficiency improvements being a potential tool to diminish the economic
vulnerability to oil prices.

3.2 Insights from Empirical Analyses

Different empirical analyses tell different stories about how (much) the oil price
matters to economic development. Interestingly, this is also true for the available
literature reviews. In their prominent survey paper, Barsky and Kilian (2004) argue
that there was little evidence that the oil price significantly affected the

4 In this respect, e.g., Lin (2008) emphasizes the role of recently rising Chinese demand for
increases in the oil price.
5 However, recent energy efficiency data provided by the IEA suggest that this global trend
towards energy efficiency halted or at least paused in 2008 and 2009.
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macroeconomic performance in the United States. Their findings suggest that oil
price shocks are neither necessary nor sufficient to explain the weak macroeco-
nomic performance in the US and generally conclude that the economic influence of
oil prices changes was rather small or even nonexistent. In contrast, the review
provided by Sauter and Awerbuch (2003) states that the “idea that rising oil prices
and price volatility serve to stifle economic activity … has by now become widely
accepted in the literature and seems virtually axiomatic”. Making reference to
influential studies using US data for the post-WW II-period, Sauter and Awerbuch
(2003) argue that oil price increases of 10 % could be followed by GDP decreases
of around 1.5 %.

The academic discussion about the robustness of an oil-to-macroeconomy-
relationship has led to the development of different measures representing oil
shocks. This term is rather vague, but implies oil price increases that are greater
than usual variations. Accordingly, apart from the discussion about channels or
transmission mechanisms of oil price shocks on the economy, the available liter-
ature suggests that the actual nature of oil price movements has to be adequately
addressed in empirical analyses in order to correctly measure the effects of oil price
shocks (Löschel and Oberndorfer 2009; see above).

While Hamilton (1983) establishes that oil prices have a linear negative effect on
GDP, subsequent research has called this result into question on the grounds that
the 1973 oil crisis included in Hamilton’s (1983) data set would be an outlier and
impact his results. Going beyond the linear oil-to-macroeconomy relationship,
Mork (1989) makes use of asymmetric oil price variables. This research shows that
the negative relationship between GDP growth and oil prices found by Hamilton
(1983) was robust in the case of oil price increases, but that the correlation between
the change in GDP and oil price decreases was significantly different or even zero,
indicating an asymmetric relationship between oil prices and economic activity. In
response to further scepticism with regard to the oil-to-macroeconomy relationship,
expressed particularly by Hooker (1996), Hamilton (1996) goes beyond the simple
asymmetric oil price effect as applied by Mork (1989). The net oil price increase
proposed by Hamilton (1996) gives values different from zero only if current oil
prices exceed the previous year’s maximum (for definitions, see Sect. 2) and out-
performs other oil price measures in causality tests provided by Hamilton (1996).

Subsequently to Hamilton’s (1996) work, the net oil price increase has been
widely used as an oil shock variable. Net oil price increases have been shown to have
a significant impact on economic performance for markets outside the US (e.g., for
Germany, see Löschel and Oberndorfer 2009, for other European countries, see
Cuñado and Pérez de Gracia 2003, and for Asian economies, see Cuñado and Pérez
de Gracia 2005). According to Du et al. (2010), a complex asymmetric relationship
between oil price and the macroeconomy is also present in China; moreover, reforms
of the national oil pricing mechanism need to be taken into account here. All in all,
evidence for economic effects of oil shocks seems therefore convincing.

As mentioned above, critics of the empirical finding of a significant oil-to-mac-
roeconomy-relationship are nevertheless widespread (see, e.g., Barsky and Kilian
2004, for the US and Schmidt and Zimmermann 2007, for Germany). Apart from the
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theoretical reasoning elaborated above, empirical arguments against a strong eco-
nomic role of the oil price include the empirically challenging questions about the
exogeneity of oil prices: Do oil prices move the economy or does the economy move
the oil price? They also address causality. In the past, oil price shocks have often
occurred in times of geopolitical crises in the Middle East. This raises the question
whether oil price hikes or respective geopolitical crises themselves affect the
economy (Barsky and Kilian 2004).

4 Oil Prices and Financial Markets

4.1 Theoretical Background

Based on the common representation of stock prices of corporation i (pi) as
expected future cash flows of the corporation (E(cfi)) that are discounted by the
discount rate δ, the argument that oil prices may affect the respective corporation’s
stock returns is straightforward. Such representation is proposed in a general
context regarding the systematic effect of macroeconomic variables on stock returns
by Chen et al. (1986). They accordingly define stock prices as

pi ¼ E cf ið Þ=d; ð7Þ

implying stock returns of corporation i of

dpi=pi ¼ d E cf ið Þ½ �=E cf ið Þ � dd=d:

Within this framework, Chen et al. (1986) argue that both changes in the discount
rate δ and in the expected future cash flows E(cfi) determine the stock returns of
corporation i. Following Oberndorfer (2009a), this suggests in particular that stock
returns of companies directly involved in the oil business or dealing with oil
products and services are affected by oil price changes. Rising oil prices would
upvalue the resource stocks of companies related to the oil business or their
products and services. Consequently, their expected future cash flows should rise.
Stock returns of utilities and other companies that use fossils fuels as an input, e.g.,
for electricity generation, would be negatively affected, as the price of their most
important input for production rises, with an ex-ante unclear ability to pass through
those cost increases to consumers.

However, based on the framework presented above, the impact of oil price
changes on stock returns can be generalized to corporations from other sectors if
it is assumed that the oil price has a direct or indirect effect on their cash flows.
Given the role oil prices play for the macroeconomy as such—as set out above from
a theoretical perspective—, the channels include induced changes of prices of oil
intensive goods, interest rates, production and wages. Oil price effects on stock
returns are therefore perceivable for corporations stemming from practically any
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sector. In particular, a negative relationship between oil prices and stock prices is
expected for corporations outside of the energy sector, given the general negative
oil-to-macroeconomy-relationship.

As described above, Sauter and Awerbuch (2003) allege that, oil price volatility
has had a more significant effect on economic activity than the oil price level since
the 1980s. Based on this claim, and against the background that the energy industry
is strongly exposed to energy price risks even though option trading is available
(Hampton 1995), it may not only be appreciations and depreciations in oil price
levels that, to the market developments of energy stocks but also oil price volatility.
Oberndorfer (2009a) argues that oil market volatility can lead to augmented
expenditures for affected corporations, and may for example induce hedging costs.
Moreover, following Pindyck (2004), an increase in price volatility may decrease
the production of the respective commodity. Therefore, Oberndorfer (2009a) con-
cludes that oil market volatility may equally impact the discounted expected future
cash flows of corporations and therefore affect stock prices as shown above in the
theoretical framework based on Chen et al. (1986).

4.2 Insights from Empirical Analyses

A number of authors have made an in-depth analysis of the role of oil prices for
financial markets, but the available literature is not as broad as in the field of the oil-
to-macroeconomy relationship. The—more intuitive—relationship between oil
prices and energy corporations’ stock prices has received more scientific attention
than possible oil price effects on corporations from other sectors (or on stock prices
in general, as measured by stock indexes).

The main result with regard to oil prices and oil corporations’ stocks is that they
are—as expected—positively related. This result has for example been produced for
the UK oil industry by Manning (1991), who also shows that the effect is largest for
corporations purely engaged in oil exploration and production. Faff and Brailsford
(1999) reproduce the general positive relationship for the Australian oil and gas
sector, Sadorsky (2001) for Canadian, and Oberndorfer (2009a) for Eurozone oil
and gas firms.

Amongst that studies that have analyzed the energy sector from a broader per-
spective, interesting contributions include that of Henriques and Sadorsky (2008)
who found that the stock prices of alternative energy companies are positively
affected by oil prices (although this result shows only little significance). Their
interpretation of this finding is that oil price movements are not as important as once
thought with regard to alternative energy companies because investors may view
the sector as similar to other high technology branches.6 Oberndorfer (2009a) finds

6 This result may also be explained by the fact that most renewable energy sources are not
competitive in many energy markets and therefore profit from different kinds of public support.
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that oil prices negatively impact stock returns of European utilities that use fossil
fuels as a main input for electricity production. In their international analysis of the
risk factors of the oil and gas industry, Ramos and Veiga (and Veiga 2011) con-
clude that the oil and gas sector in advanced countries responds more strongly to oil
price changes than in emerging markets, and that oil and gas industry returns
respond asymmetrically to oil price changes: Oil price rises have a greater impact
than oil price drops.

Sadorsky’s (1999) findings suggest that oil price movements are an important
determinant of stock returns in general. Based on an analysis of stock return data
for the S&P 500—i.e., the biggest US corporations—Sadorsky (1999) draws the
conclusion that positive shocks to oil prices depress real stock returns. Similar
results are produced by Nandha and Faff (2008) who analyze different industry
indices. Their findings indicate that oil price rises have a negative impact on equity
returns for all sectors except energy industries.

Very few authors have integrated oil price volatility in empirical analyses of
stock markets. This is even more striking given the fact that at least two analyses
have produced statistically significant results on this. Oberndorfer (2009a) finds that
oil market volatility negatively affects European oil and gas stocks. He specifically
shows that also for castable oil market volatility impacts the stock market, implying
profit opportunities for strategic investors. According to Sadorsky (2003), tech-
nology stock return volatility is positively affected by oil price volatility. The
analysis of Arouni et al. (2011) for the stock markets of the Gulf Cooperation
Council countries suggests that there are both return and volatility spillovers
between oil and stock markets.

5 Conclusion

The oil price is back on the political agenda. This makes it even more important to
analyze the relevance of oil prices for the economy and financial markets. This
paper intends to contribute to that debate—not by estimating the magnitude of oil
price effects, but rather by shedding some light on the arguments, notions and
definitions underlying the existing analyses.

Apart from these theoretical and technical aspects, this review documents the
general consensus amongst economists that the economic significance of moderate
oil price movements is low or even nonexistent. Even minor oil price changes affect
financial markets, however: Stock prices of energy companies as well as those
operating in other sectors are shown to be very sensitive to price movements and
volatility of the oil market. As long as oil prices remain within a price floor,

(Footnote 6 continued)
Several renewable energy support schemes such as feed-in-tariffs applied in many countries
eliminate price risks for renewable energy generation so that the prices of fossil fuels such as oil
should have a minor impact—or no impact at all—on renewable companies’ businesses.
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macroeconomic indicators seem to be barely affected. However, there is strong
evidence that energy price shocks, i.e., massive price movements, have significant
economic effects. Macroeconomic impacts may depend on their own “nature”—the
differentiation between supply and demand shocks provides an example in this
regard—, on the national or regional particularities—such as the level of energy
efficiency—, as well as on policy responses.

The debate about the oil-to-macroeconomy-relationship is not over. Methodo-
logical challenges such as causality and endogeneity remain an issue and the
question about how strongly the oil price affects economic outcomes is far from
being resolved.7 These questions call for further empirical analysis, based on
approaches presented in this paper as well as on modern econometric techniques.
As oil prices are expected to continue rising in the mid- and long-term (e.g., IEA
2011b), the question about their economic implications will remain highly relevant.

The age of cheap oil may be over, as stated by both the IEA and the peak oil
hypothesis. As a result, and in combination with the rise of shale gas and progress
on renewable energy technologies, the world might be entering a golden age of gas
as well as a period of electrification. This suggests the increasing importance of
analyses that deal with non-oil energy market segments such as electricity and gas
markets. The approaches presented in this paper should be well suited also for these
kinds of assessments. For this analytical purpose, the integration of macroeconomic
energy cost indicators (Oberndorfer 2012) could also be considered. Finally, carbon
markets such as the European Union Emission Trading Scheme (EU ETS) as
further evolving energy markets could be assessed (cp. Oberndorfer 2009b or
Chevallier 2011).
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Oil Shock Transmission to Stock Market
Returns: Wavelet-Multivariate Markov
Switching GARCH Approach

Rania Jammazi

Abstract Our understanding of the nature of crude oil price shocks and their
effects on the stock market returns has evolved noticeably in recent years. Evidence
of spillover effects between several kinds of markets has been widely discussed
around the globe, and yet the transmission of shocks between crude oil market and
stock market returns has received little attention. Extending earlier work in the
literature, we use data on monthly crude oil returns and stock market returns of five
developed countries (USA, UK, Japan, Germany and Canada) to investigate two
issues that have been at the centre of recent debates on the effect of crude oil shocks
on the stock market returns. First, we analyse whether shocks and or volatility
emanating from two major crude oil markets are transmitted to the equity markets.
We do this by decomposing monthly real crude oil prices and analysing the effect of
the smooth part on the degree of the stock market instability. The motivation behind
the use of this method is that noises can affect the quality of the shock and thus
increase erroneous results of the shock transmission to the stock market. Second,
under the hypothesis of common increased volatility, we investigate whether these
states happen around the identified international crises. In doing so, flexible model
is implemented involving the dynamic properties of the Trivariate Markov
switching GARCH model and the recent Harr A trous wavelet decomposition, in
order to achieve a strong prediction of the abovementioned situations The proposed
model is able to circumvent the path dependency problem that can affect the pre-
diction’s robustness and also provides useful information for investors and gov-
ernment agencies that have largely based their views on the notion that crude oil
markets negatively affect stock market returns. Indeed, the results show that the A
Haar Trous Wavelet decomposition method appears to be an important step toward
improving accuracy of the smooth signal in detecting key real crude oil volatility
features. Additionally, apart from UK and Japanese cases, the responses of the stock
market to an oil shock depend on the geographic area for the main source of supply
whether it is from the North Sea or from North America (as two oil benchmarks are
used, WTI and Brent respectively).
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1 Introduction

The stock market movements as contained in the stock price (among other eco-
nomic indicators) send us some obvious “signals” of a country’s economic strength
and development. For instance, a bull stock market, i.e. a market which goes up and
maintains upward trends, is associated with increasing business investment and vice
versa.

However, the majority of Organisation for Economic Co-operation and Devel-
opment (OECD) countries have become increasingly dependent upon oil over the
last century and this is now recognised as the most essential energy source. In 2008,
the US was the largest consumer of oil, consuming around 20 million barrels per
day, followed by China (7.8) and Japan (4.8) (EIA 2008). The 2007–2008 period
marked the fastest price changes in the history of oil. In fact, oil prices rose
dramatically to more than 140 dollars per barrel in August 2008 (the record peak),
and then sharply dropped to around 30 dollars per barrel in December 2008.1 This
(and also other sequences of very large increases and decreases observed in crude
oil prices over the last three decades) will obviously affect companies’ earnings
very significantly as oil operating costs lead to a remarkable change in stock prices.

Despite the considerable attention that has been paid to the investigation of the
relationship between changes in the price of crude oil and stock prices, conclusions
on these effects cannot yet be drawn. More than 20 years ago, Jones and Kaul (1996)
observed that stock market returns of USA, Canada and Japan respond negatively to
oil shocks. However, Huang et al. (1996) found no evidence of the relationship
between US stock returns and changes in the price of oil futures. Wei (2003) argued
that the decline in stock prices after the 1973/74 oil crisis seems too large to be
explained by the rise in oil prices. Chen et al. (1986) in contrast, concluded that oil
price changes have no impact on asset pricing. Using structural VAR, Kilian and
Park (2009) demonstrate that it is useful to differentiate between three distinct
sources of oil shocks in the global market for crude oil before assessing the impact of
an oil price shock on aggregate US real stock returns. In particular, they report that
only an oil price increase driven by a precautionary demand for oil associated with
concerns about future oil supply shortfalls, namely “precautionary demand shocks”,
negatively affects stock prices. In contrast, shocks to the production of crude oil “oil
supply shocks” have no significant impact on the US stock returns. Finally, shocks
driven by strong global demand for industrial commodities including crude oil,
“aggregate demand shocks”, have persistent positive effects on cumulative stock
returns within the first year of the expansionary shock.

1 Source: Wikipedia, the free encyclopedia; http://en.wikipedia.org/wiki/Price_of_petroleum.
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However, the impact of oil prices on other macroeconomic variables such as
inflation, real Gross Domestic Product (GDP) growth rate, unemployment rate and
exchange rates, is a matter of great concern for all economies. Hamilton (1983)
documents that oil price increases have often been followed by economic recessions
in the US since the Second World War. However, Hooker (1996) did not confirm
Hamilton’s results and argued that the negative relationship between oil prices and
output no longer exists when the sample is extended to the 1990s. Lee et al. (1995),
Ferderer (1996) and Hamilton (1996) demonstrate for sample periods that include
recent years that nonlinear transformations of oil price changes restore that rela-
tionship. More recently, several studies have highlighted that economic activity is
significantly affected by oil price changes (Kilian (2008) and Cologni and Manera
(2008)) among others). Blanchard and Gali (2009) also found that oil price shocks
have exhibited a decreased impact on GDP since 1990 for the US and other
developed countries. This result can thus be explained by the fact that “US has
become less volatile and more insolent from external shocks, better economic
policy, lack of large adverse shocks, or a smaller degree of energy dependence (i.e.
more efficient use of energy resources and a larger share of the services sector in
the economy)” (Wu and Cavallo 2009, p. 3).

A number of studies have given special attention to the Multivariate Generalized
AutoRegressive Conditional Heteroskedasticity models (M-GARCH) as they pro-
vide a better understanding of both volatility and co-volatility dynamics for mul-
tiple series than the nested univariate model, namely GARCH of Bollerslev (1986).
The specifications include the Baba et al. 1987 (BEKK) (Engle and Kroner 1995),
constant correlation model (CCC) (Bollerslev (1990), dynamic conditional corre-
lation model (DCC) (Engle 2002) …etc.2 The M-GARCH with the parameterisation
BEKK (BEKK M-GARCH) model introduced by Engle and Kroner (1995) appears
to be an appropriate methodology to reveal much more crucial information on the
interaction among a given set of financial time series. Examples of recent studies on
this subject include; Agren (2006) who use weekly data on the aggregate stock
markets of Japan, Norway, Sweden, the UK and the US to investigate volatility
spillovers from oil prices to stock markets within an asymmetric BEKK model. He
found strong evidence of volatility spillovers for all stock markets with the
exception of Sweden where evidence was weak. On the other hand, Aloui et al.
(2008) find that changes in crude oil prices have a significant effect on the volatility
of the stock market return of six developed countries, namely; US, UK, France,
Japan, Germany and Canada using univariate (cross correlation functions) and
BEKK M-GARCH) approaches.

Several authors have discussed in detail the inadequacy of linear models for
capturing asymmetries. Therefore, regime switching models arose as an alternative to
standard GARCH models allowing the behaviour of dynamic variables to depend on
the state that takes place at any given point in time. Themain advantage of theMarkov
Switching processes, often advocated in the literature, is that they can handle many

2 For an extensive survey, see Bauwens et al. (2003).
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crucial features of time series such as nonlinear phenomena, temporal asymmetries as
well as persistence of the macroeconomic times series (Diebold 1986; Hamilton and
Susmel 1994; Lamoureux and Lastrapes 1990). Univariate regime switching models
were first proposed by Hamilton (1989, 1990) to examine the relation between
turning points and changes in regimes. Markov Switching models are utilised to
investigate the heteroskedastic behaviour of asset returns (Schwert 1989), the effects
of oil prices on US GDP growth (Raymond and Rich 1997)…inter alia. Aloui and
Jammazi (2009) have used univariate Markov switching EGARCH model with
constant or time varying transition probabilities to analyse the response of the stock
market returns to the oil shocks in UK, France and Japan.

Most studies to date have assumed that shock spillover intensity does not vary
over time. To overcome this problem, some authors extend the standard method-
ology by allowing for regime switches in the volatility and spillover parameters
(Beale 2002). Assuming state-dependent conditional correlations, several different
Multivariate versions of Markov Switching GARCH models (M-MSG) have also
been developed. M-MSG models are nested within constant conditional correlation
(CCC-GARCH), time-varying conditional correlation (DCC-GARCH) of Engle and
Sheppard (2001) and BEKK-GARCH of Gray (1996). In order to solve the path
dependency problem of the Markov Switching GARCH model, i.e. the conditional
variance and conditional covariance will depend on all past information, Gray
(1996) suggests a tractable formulation for the conditional variance process by
using the conditional expectation of the variance without giving up GARCH terms
(the latter was elaborated by Hamilton and Susmel (1994) and Cai (1994) as a first
solution to the path dependency problem). Haas et al. (2004), among others, modify
Gray’s approach to circumvent the path dependency problem. Gray’s (1996)
bivariate BEKK MSG models is perhaps the most applied model in a wide variety of
applications such as estimating time-varying optimal hedge ratios (Alizadeh et al.
2008, or Lee and Yoder 2007), understanding the source and the intensity of shock
spillover between stock market returns (Beale 2002). Based on Gray’s approach, we
propose a tractable model, namely the trivariate BEKK MSG model, which is more
suitable for modeling the relationship between real crude oil price volatility and
international real stock market returns.

In addition, using this kind of models represents another major contribution to
the literature on the crude oil—stock market relationship. In fact, one limitation of
existing work on the analysis of this relationship is that the price of crude oil is
often treated as exogenous. However, Kilian (2008) suggests that models relying on
exogenous oil price variables have been misleading in recent years. Further, Kilian
(2008a, b) argue that “direct measures of exogenous shocks to the production of
crude oil have low explanatory power for the real price of crude oil” (Kilian 2009,
p. 19). Therefore, based on Kilian’ arguments, our new class of model again proves
to be helpful to understanding the relationship between real crude oil prices and
stock market returns.

In particular, this paper analyses the shock and volatility transmission from the
crude oil market to the stock market returns of US, UK, Germany, Japan and
Canada under the trivariate BEKK MSG approach with two common states in the
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period January 1989 to December 2007. We combine the former with the wavelet
decomposition approach, especially the Â Haar Trous Wavelet approach (Â HTW)
in order to glean a better understanding of crude oil transmission.

Undoubtedly, GARCH models worked well to capture the leptokurtosis and
volatility clustering generally observed in financial time series but they demonstrate
some inaccuracies in terms of changes of time scales (Yalamova 2006). One major
advantage afforded by wavelets analysis is its ability to perform local analysis—that
is, to analyse a localised sub image area of a larger image (or signal). Therefore,
wavelet analysis is capable of revealing aspects of data that other signal analysis
techniques (like GARCH models) usually miss; aspects like trends, sharp spikes,
discontinuities in higher derivatives, self-similarity…etc. Similarly, wavelet anal-
ysis can often compress or de-noise a signal without appreciable degradation (Misiti
et al. 2008) because it affords a different view of data from that presented by
traditional techniques. In their brief history within the signal processing field,
wavelets have already proven a very useful tool for data de-noising and decon-
volution (separation between two convolved signals namely smooth and detail). In
this paper, we restrict our attention to “the Â HTW transform”, introduced by
Murtagh et al. (2004) and designed as well suited for outlier detection in order to
decompose the real crude oil returns into six scales and a smooth part. We therefore
extract the smooth series in light of the empirical evidence suggesting that the latter
contains less noise than the original signal, allowing for more accurate detecting
dynamic regime shifts, see Jammazi and Aloui (2009).

In summary, this paper introduces a novel insight for characterizing the rela-
tionship between crude oil market and real stock market returns. Firstly, using 6
levels Â HTW decomposition, we extract the main information from the real crude
oil signal which is designed by the smooth low frequency part of the original series.
Secondly, we examine the transmission mechanisms between the desired variables
under a trivariate BEKK MSG model with common two states that are characterised
as low mean high variance regime and high mean low variance regime. Specifically,
we allow volatility in the different equity markets to depend purely on shocks and/
or volatilities originated from crude oil market.

The rest of the paper is organised as follows: Sect. 2 presents the two econo-
metric methodologies, namely Â HTW decomposition method and the trivariate
BEKK MSG model. Section 3 presents the data and discusses how the smooth
fluctuations of the real crude price of oil might be transmitted to the real stock
market returns and Sect. 4 concludes.

2 Econometric Methodology

In this section we give a detailed description of the wavelet transform used for the
crude oil data decomposition together with the multivariate BEKK MSG applied in
our analysis.
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2.1 Signal Decomposition Using the Wavelet Method:
Â Haar Trous Wavelet (Â HTW)

The Â HTW approach was performed according to Murtagh et al. (2004). Below, we
briefly recall the basic notions of the discrete wavelet theory; we present the main
characteristics of the “â trous” algorithm as an alternative to the Discrete Wavelet
Transform DWT and finally we discuss the properties of the “Â Haar Trous”
wavelet decomposition approach.

2.1.1 Discrete Wavelet Transform

Contrary to the trigonometric functions, wavelets are defined in a finite domain and
unlike the Fourier transform they are well-localised with respect to both time and
scale. This behaviour ultimately makes them useful to analyse non-stationary sig-
nals. The other most important property of the wavelet method is that it can be used
to recreate a series without loss of information. Indeed, the wavelet transform
techniques split up a signal into a large timescale approximation (coarse approxi-
mation) and a collection of “details” at different smaller timescales (finer details).
The coarse image preserves the large-scale structure and the mean of the image,
whereas the “detail” or wavelet levels complement the coarse level and thus pre-
serve the total image information. The first step of the wavelet de-noising method is
the application of filters.

The dilation and the translation of the basis functions at different resolution
levels are described by the scaling function φ, the so-called father wavelet, (Strang
1989) given by:

/j;k tð Þ ¼ 2�j=2/ 2�jt � k
� �

or u xð Þ ¼
X

k

hk � u 2x� kð Þ ð1Þ

hk denotes the low-pass filter coefficients. The low pass filter is a filter that allows
only low frequency signals through its output, so it can be used to reduce the
amplitude of signals with high frequencies.

Detail levels are generated from the single basic wavelet ψ, the so-called mother
wavelet:

wj;k tð Þ ¼ 2�j=2w 2�jt � k
� �

or w xð Þ ¼
X

k

gk � u 2x� kð Þ ð2Þ

where j = 1 +⋯+ J in a J-level decomposition. gk is called the high-pass (or a band-
pass) filter coefficients closely related to the low-pass filter (hk) mentioned above.
The high pass filter does just the opposite, by allowing only frequency components
below some threshold.
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The father wavelets are used to capture the smooth, low frequency nature of the
data, whereas the mother wavelets are used to capture the detailed and high fre-
quency nature of the data. The father wavelet integrates to one, and the mother
wavelet integrates to zero (Heil and Walnut 1989). Thus, an original signal f(t) in
L2(R) may be expanded approximately using these two basic wavelet functions
(φ and ψ):

f ðtÞ �
X

j

X

k

aj;k/j;kðtÞ �
X

k

sJ;k/J;kðtÞ þ
X

k

dJ;k/J;kðtÞ þ � � � þ
X

k

d1;k/1;kðtÞ

�
X

k

sJ;k/J;kðtÞ þ
X

j

X

k

dj;kwj;kðtÞ

ð3Þ

where sJ,k = 〈f(t), ϕj,k(t)〉 and dj,k = 〈f(t), ψj,k(t)〉 are the wavelet coefficients. The
coefficients sJ,k and dj,k are the smooth and the detail component coefficients
respectively and are given by the projections:

sJ;k ¼
Z

/J;kf ðtÞdt ð4Þ

dJ;k ¼
Z

wJ;kf ðtÞdt ð5Þ

2.1.2 Â Trous Wavelet Transform

A potential drawback of the application of the DWT in time-series analysis is that it
suffers from a lack of translation invariance. To overcome this problem, some
authors (Coifman and Donoho 1995 among others) suggest applying a redundant or
non-decimated wavelet transform.3

According to Zhang et al. (2001), the advantage of the redundant wavelet
transform, i.e. the so-called Trous (with holes) algorithm, lies in the fact that it is
shift invariant and it produces smoother approximations by filling the “gap” caused
by decimation, i.e., it is non-decimated (it conserves the original dimensions of the
series). A redundant algorithm is based on the so-called autocorrelation shell
representation using dilations and translations of the autocorrelation functions of
compactly supported wavelets.4

The scaling and the wavelet functions are chosen to satisfy the following
equations respectively:

3 A detailed description of the properties of the Â Trous and the Mallat algorithm is given in
Mallat (1989) and Shensa (1992).
4 For more details, see Saito and Beylkin (1992).
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1
2
� /

x
2

� �
¼

X

k

hðkÞ/ðx� kÞ ð6Þ

1
2
� w

x
2

� �
¼

X

k

gðkÞwðx� kÞ ð7Þ

where h is a discrete scaling low-pass filter while g is a discrete high-pass filter
associated with the wavelet function.

These two functions satisfy the following equation:

1
2
� w

x
2

� �
¼ /ðxÞ � 1

2
/

x
2

� �
ð8Þ

Using the filters h and g, we obtain the pyramid algorithm for expanding into the
autocorrelation shell. The smoothed and the detailed signals at a given resolution
j and at a position t are obtained by these convolutions:

sjðtÞ ¼
Xþ1

l¼�1
hðlÞsj�1ðt þ 2j�1 � lÞ ð9Þ

djðtÞ ¼
Xþ1

l¼�1
gðlÞsj�1ðtþ2j�1 � lÞ ð10Þ

where 1 < j < J, h is a low-pass filter.
A very important property of the autocorrelation shell coefficients is that signals

can be directly derived from them Zhang et al. (2001). In each step, the series is
convolved with a cubic B-spline filter, h, with 2j−1 × l zeros inserted between the B-
spline filter coefficients at level j, hence the name “with holes”. The convolution
mask in one dimension is 1/16 [1, 4, 6, 4, 1]. Thus, we get a series of smoothed
versions sj with s0 (s0(t) = x(t) the finest scale) as the normalized raw series. Given a
smoothed signal at two consecutive resolution levels, the detailed signal d(t) at level
j, can be derived as:

djðtÞ ¼ sj�1ðtÞ � sjðtÞ ð11Þ

The set d = {d1(t), d2(t), …dJ(t), sJ(t)} represents the wavelet transform of the
signal up to the scale J, and the signal can be expressed as a sum of the wavelet
coefficients and the scaling coefficient:

xðtÞ ¼ sJðtÞ þ
XJ

j¼1

djðtÞ ð12Þ
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2.1.3 The Â Haar Trous Wavelet Transform (Â HTW)

Here, we select Haar wavelet filter to implement the Â Trous wavelet transform.
The asymmetry of the wavelet function used makes it a good choice for edge
detection, i.e., localised jumps. However, the usual Haar wavelet transform is
decimated. Consequently, Murtagh et al. (2004) develop a non-decimated or
redundant version of this transform. The non-decimated or redundant algorithm is
the Â Trous algorithm with a low-pass filter h = (1/2, 1/2).

The non-decimated Haar algorithm is exactly the same as the Â trous algorithm,
except that the low-pass filter h, (1/16…etc.), is replaced by the simple non-sym-
metric filter h = (1/2, 1/2). By convolving the original signal with the wavelet filter
h, we create the wavelet coefficients.

sjþ1 ¼ 1
2

sj;t�2 j þ sj;t
� � ð13Þ

Thus, the scaling coefficients at a higher scale can be easily obtained from the
scaling coefficients at a lower scale:

djþ1ðtÞ ¼ cjðtÞ � cjþ1ðtÞ ð14Þ

2.2 Wavelet-Multivariate Markov Switching
GARCH-BEKK Model

Several studies on the transmission volatility between different financial variables
are based on the estimation of multivariate BEKK GARCH models (Saleem 2009;
Li and Majerowska 2008; Bachmeier 2008; Malik and Hammoudeh 2007; Agren
2006 among others).

Although these models are parsimonious, they were based on constant shock and
volatility transmissions. Multivariate Regime Switching models, which are both
time varying and state dependent, are used henceforth to solve this problem. The
main advantage of Markov-switching processes, often advocated in the literature, is
their ability to take into account features such as nonlinear phenomena, temporal
asymmetries as well as persistence of the macroeconomic time series: these features
are crucial in the analysis of the dynamic linkage between crude oil prices and stock
market returns (Aloui and Jammazi 2009). Hamilton and Susmel (1994) and Cai
(1994) were the first to allow for regime-switches in the ARCH process. Gray
(1996) extended their methodology to regime switching GARCH-models. In this
section, we extend the standard multivariate BEKK-GARCH model of Engle and
Kroner (1995) to allow for the presence of regime shifts. Finally, we discuss the
trivariate wavelet BEKK MSG that we will use in the current analysis in order to
study the transmission mechanism of shocks (volatility) originating from crude oil
market to equity market returns.
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2.2.1 Generalised Regime Switching GARCH Model with Path
Dependent Volatility

Following Haas and Mittnik (2008), in this section we derive the multivariate
BEKK MSG process.

Let us suppose that the joint process for a given number of series is governed by
the following set of equations:

Rt ¼ Uþ Et

et;st ¼ H1=2
Dt ;tEt Et=Xt�1 ! Nð0M�1; IMÞ

ð15Þ

Both the return R and the variance H are made regime dependent. Let Rt be the
return matrix at time t, modeled as a constant plus a disturbance term. Φ constitutes
the constant vector, IM denotes the identity matrix of dimension M, The transition
between the successive states is governed by a first order Markov process {Δt} with
finite state space S = {1, 2,..., k} and a primitive (i.e., irreducible and aperiodic)
fixed k × k transition probability matrix P,

P ¼
p11 � � � pk1
� � � � � � � � �
p1k � � � pkk

2

4

3

5 ð16Þ

where the transition probabilities are given by

pij ¼ pðDt ¼ j=Dt�1 ¼ iÞ; i; j ¼ 1; . . .; k

The regime-dependent covariance matrix H is assumed to follow a Multivariate
Markov Switching GARCH (p, q, k)) in Vech form as introduced by Bollerslev et al.
(1988);

hjt ¼ c0j þ
Xq

i¼1

aijgt�i þ
Xp

i¼1

bijhjt�i j ¼ 1; . . .; k ð17Þ

where αi = [αi1
′ , …, αik

′ ]′, i = 1, …, q and βi = [βi1
′ ,…, βik

′ ]′, i = 1, …, p are parameter
matrices of appropriate dimension. The number of the independent element of the
regime-dependent conditional covariance matrices Hjt, is N:= M(M + 1)/2. The
“squared”, (eet

′) in hjt:= vech(Hjt) and ηt:= vech(etet
′), respectively.

A major disadvantage of using the model defined in (17) is that the positive
definiteness of the estimated conditional covariance matrices is not guaranteed
(Ding and Engle 2001) Every covariance matrix must be positive definite but for
this model it is probably impossible to give general restrictions on parameters to
insure a positive definite covariance matrix.
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Parameter constraints are required to make the application trustworthy. Such a
parameterisation is provided by the Baba et al. (1987) (BEKK) representation of
Engle and Kroner (1995) which specifies the conditional volatility as

Hjt ¼ c�0jc
�0
0j þ

XL

l¼1

Xq

i¼1

a�ij;let�ie
0
t�ia

�0
ij;l þ

XL

l¼1

Xp

i¼1

b�ij;lHt�ib
�0
ij;l j ¼ 1; . . .; kf g

where γ0j
* are k × k lower triangular matrices of state dependent coefficients, L is the

lag operator. γ0j
* , αij

* and βij
* are state dependent matrices.

By recombining the GARCH model to regime switching and given h0
2, recursive

substitution in a univariate MS-G (1,1) model yields Haas et al. (2004):

h2t;st ¼
Xt�1

i¼0

ðcst�i
þ ast�i e

2
t�1�iÞ

Yi�1

j¼0

bst�j
þ h20

Yt�1

i¼0

bst�i
ð18Þ

Although the BEKK model involves far fewer parameters than the unrestricted
vech form, the conditional variance as specified in Eq. (18) suffers from the path
dependence problem. Indeed, in this formulation, the state dependent conditional
variances are a function of the lagged values of the lagged aggregated variances and
aggregated error terms (after integrated the unobserved state variable).

To circumvent the path dependency problem, Gray (1996) introduces a
recombining method that collapses the conditional variances in each regime by
taking the conditional expectation of ht

2 based on the regime probabilities.5 As a
consequence, the conditional variance and the residual depend only on the current
regime, not on the entire past history of the process. Based on the Gray (1996)’s
recombining method, in the following section we analyse how this path dependence
problem may be resolved in our trivariate MS-G model case.

2.2.2 Circumventing the Path Dependency Problem: Case
of a Trivariate Markov Switching BEKK GARCH
(Trivariate BEKK MSG)

Since three equations complicate the estimation considerably, we have to make
some choices in terms of the required number of volatility states and parameters
involved in the estimation procedure. We restrict our study to the case of three
equations and two states. Thus, the state-dependent crude oil and stock market
returns are specified as:

5 Gray (1996) proposes a recombining method for the univariate Markov Switching volatility
model. For a detailed description of the path-dependence problem and its solution for the
univariate MS GARCH process case, see Lee and Yoder (2007).
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rs;t ¼ ls;st þ es;t;st
rw;t ¼ lw;st þ ew;t;st
rb;t ¼ lb;st þ eb;t;st

ð19Þ

where subscribers s, w, and b denote real stock market returns, WTI and Brent real
crude oil volatilities (the smooth part), see Eq. (13) respectively, μ is a constant
where U ¼ ðls;stlw;stlb;stÞ0. es;t;st ; ew;t;st and eb;t;st are state dependent residual
terms. The unobserved state variable st = {1, 2} is interpreted as the market state or
regime when the process is at time t, which follows a first-order, 2-dimensional state
Markov process.

The conditional variances are specified as:

Et;st=wt�1 ¼
es;t;st
ew;t;st
eb;t;st

2

4

3

5=wt�1 ! TN 0;Ht;st

� � ð20Þ

TN denotes the trivariate normal. Ht;st is a state-dependent conditional variance-
covariance matrix of each return.

The time-varying 3 × 3 positive definite conditional covariance matrix, Ht;st , is
specified as (where p = q = 1):

Ht;st ¼
h2s;t;st 0 0

0 h2w;t;st 0

0 0 h2b;t;st

2

64

3

75 ¼
css;st 0 0

0 cww;st 0

0 0 cbb;st

2

64

3

75

css;st 0 0

0 cww;st 0

0 0 cbb;st

2

64

3

75

0

þ
ass;st

0

0

asw;st

0

0

asb;st

0

0

2

664

3

775

0

e2ss;t�1 es;t�1ew;t�1 es;t�1eb;t�1

0 0 0

0 0 0

2

64

3

75

ass;st

0

0

asw;st

0

0

asb;st

0

0

2

664

3

775

þ
bss;st

0

0

bsw;st

0

0

bsb;st

0

0

2

664

3

775

0

h2s;t�1 hsw;t�1 hsb;t�1

0 0 0

0 0 0

2

64

3

75

bss;st

0

0

bsw;st

0

0

bsb;st

0

0

2

664

3

775

¼CstC
0
st þ AstEt�1A

0
st þ BstHt�1B

0
st

ð21Þ

where Γst is a 3 × 3 diagonal matrix of state dependent coefficients, Ast and Bst are
3 × 3 state dependent coefficient matrices restricted to be of 1 × 3 dimension for
further simplification.

hsw;t;st and hsb;t;st are conditional covariance at time t given st, and h2s;t;st , h
2
w;t;st and

h2b;t;st are conditional variances at time t given st. The matrices Cst ; Ast and Bst

and Et-1 are compact representations of the state-dependent coefficients γ, α, β and
e respectively.

We will refer to the model defined by Eq. (21) as a trivariate BEKK Markov-
switching GARCH (1,1;2) process or, in short triavariate BEKK-MSG (1,1;2). Since
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we are interested in providing the results related to the shock and volatility trans-
mission only from the crude oil market to the stock market in presence of regime
switching, we assume that only h2s;t follows a BEKK-MSG (1,1) process under two

volatility states (high volatility and low volatility) and each of h2w;t and h2b;t follow a
constant.6 We allow for the vectors of mean and variance parameters to switch
across two regimes.

As in the univariate regime switching GARCH model, the recursive nature of the
GARCH process makes the basic form of the model intractable due to the
dependence of the conditional variance on the entire past history of the data. Indeed,
only the first equation i.e., h2s;t, of the proposed trivariate GARCH model, is subject
to the path-dependency problem. Hence, it depends directly on the state variable st
and h2s;t�1, which itself depends on st−1 and h2s;t�2 and so on. The computation of the
likelihood function for a sample of length T requires the integration over all 2T

possible (unobserved) regime path, rendering estimation of the model infeasible in
practice. This is the well-known path dependency problem in the regime switching
literature (Cai 1994; Hamilton and Susmel 1994; Gray 1995, 1996). Furthermore,
this problem is present not only in variances and residuals, but also in the
covariance between crude oil and stock market returns hsw,t and hsb,t.

Using Gray (1996)’s recombining method at time 1, the path-independent
conditional variance, residual and covariance for the stock market variance-
covariance equation are given, respectively, by:

h2s;t ¼ E r2s;t wt�1j
� �

� E rs;t wt�1j� �2

¼ p1;t l2s;1 þ h2s;t;1
� �

þ 1� p1tð Þ l2s;2 þ h2s;t;2
� �

� p1tls;1 þ 1� p1tð Þls;2
� �2 ð22Þ

es;t ¼ rs;t � E rs;t wt�1j� �

¼ rs;t � p1tls;1 þ 1� p1tð Þls;2
� � ð23Þ

hsi;t ¼ Covðrs;t; ri;t wt�1j Þ
¼ E rs;tri;t wt�1j� �� E rs;t wt�1j� �

E ri;t wt�1j� �
i ¼ w; bf g ð24Þ

where;

E rs;tri;t wt�1j� � ¼ p1t ls;1li;1 þ hsi;t;1
� �þ 1� p1tð Þ ls;2li;2 þ hsi;2

� � ð25Þ

E rs;t wt�1j� � ¼ p1tls;1 þ 1� p1tð Þls;2 ð26Þ

E ri;t wt�1j� � ¼ p1tli;1 þ 1� p1tð Þli;2 ð27Þ

6 Henceforth, the conditional covariances hws;t�1;st and hbs;t�1;stand the variances h2w;t�1;st and
h2b;t�1;st were fixed to be zero.
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With this definition, the conditional covariance depends only on the current
regime, not on the entire past history of the process. The model is then state-
independent and tractable even with large samples.

A graphical illustration for the recombining method for BEKK Markov
Switching model is shown below (Fig. 1).

The regime probability of being in state 1 at time t is:

p1t ¼ Pr st ¼ 1 wt�1jð Þ

¼ P
f1t�1p1t�1

f1t�1p1t�1 þ f2t�1 1� p1t�1ð Þ
� 	

þ 1� Qð Þ f2t�1 1� p1t�1ð Þ
f1t�1p1t�1 þ f2t�1 1� p1t�1ð Þ

� 	

ð28Þ

where

P ¼ Pr st ¼ 1 st�1 ¼ 1j½ �
Q ¼ Pr st ¼ 2 st�1 ¼ 2j½ � ð29Þ

fst ¼ f ðRt st ¼ i;wt�1j Þ ¼ ð2pÞ�1 Ht;i



 

�1=2
exp �1=2e

0
t;iH

�1
t;i et;i

n o
; for i ¼ 1; 2f g

ð30Þ

Rt = [rs,trw,trb,t]
′ is a vector of crude oil and stock market returns at time t. H and

e are defined in Eqs. (20) and (21), respectively.
The steady-state probabilities of st used as the initial start value for the recursive

expression of the regime probability is:

Prðst ¼ 1 w0j Þ ¼ 1� Q
2� P� Q

ð31Þ

where P and Q are state transition probabilities assumed to follow a logistic dis-
tribution defined as in the following equations;

Fig. 1 Path-independent conditional variance of a trivariate BEKK-MSG model
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P ¼ Pr st ¼ 1 st�1 ¼ 2j½ � ¼ expðp0Þ
1þ expðp0Þ

Q ¼ Pr st ¼ 2 st�1 ¼ 2j½ � ¼ expðq0Þ
1þ expðq0Þ

ð32Þ

p0 and q0 denote unconstrained constant terms which have to be estimated along
with the regression coefficients’ system.

Given the path independent BEKK MSG model as described by Lee and Yoder
(2007), the unknown parameters that we seek to estimate for our trivariate case

model are p0; q0; ls;st ; lw;st ; lb;st ; css;st ;
n

csw;st ; csb;st ; ass;st ; asw;st ; asb;st ; bss;st ;

bsw;st ; bsb;stg for st = {1, 2}. We obtain the estimates parameters by maximising the
following log-likelihood function.

LL ¼
XT

t¼1

log p1tf1t þ ð1� p1tÞf2t½ � ð33Þ

where fit for i = {1, 2} is defined as shown in Eq. (30).

3 Methodology Results and Discussions

3.1 Data

Our analysis deals with two variables; (1) real stock returns of five major industrial
countries, namely; US (DJIA), UK, (FTSE100), Germany (Dax30), Japan
(NIKKEI225) and Canada (TSX) and (2) real prices of two major crude oil prod-
ucts, defined as the US price of West Texas Intermediate Cushing (WTI) and the
Europe Brent which are quoted in dollars per barrel. Crude oil prices were extracted
from the US Department of Energy (Energy Information Administration), while
stock market prices were taken from the International Financial Statistics databases
(IFS). All the data are measured on a monthly basis. The use of a monthly fre-
quency is justified by the need to observe common high volatility phases that are
expected to be coincident with the ECRI recession dating periods which are also
provided in monthly frequency over the investigated period. The sample covers the
period from January 1989 to December 2007, for a total of 228 observations. All
the data were used in real terms. For each country, real stock returns are defined as
the difference between the continuously compounded return on stock price index
and the inflation rate given by the log-difference in the consumer price index.
Consumer price indices are from OECD databases. On the other hand, the most
accurate measure of an oil shock is the real oil price. The world oil prices were
therefore deflated by the consumer price index (CPI) of each country. In other
words, we take the world price of oil in US $ and divide by the CPI of each country.
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This choice of variables may ultimately be crucial for comparison purposes. Indeed,
many of the recent studies have shown that net oil prices have predictive content for
determining stock market turning points (Aloui and Jammazi 2009). In contrast to
some work, we would like to show that the real oil prices are also a useful predictor
of turning points in stock markets. Figure 3 (left panel) plot the real equity returns
and the smooth part of the real crude oil returns.7 It is likely that time series include
structural changes in the mean during the investigated period. For instance, real
DJIA return series increases especially around 1992 and 2007. However, for the
other countries, real equity returns experience several jumps throughout most of the
period that roughly coincide with the major conventional crises.

The results from Fig. 3 (left panel) provide some preliminary evidence of
(roughly) coincidental market volatility switches between real stock returns and the
smoothed real crude oil volatility during the study period. In the following sections,
we explore this issue further by applying the trivariate wavelet-BEKK MSG model.
Let us start with the extraction of the smoothed series for the crude oil volatility
index based on the new wavelet decomposition method described above.

3.2 Haar Trous Wavelet Decomposition: Application
to the Real Crude Oil Volatility

Oil prices have traditionally been more volatile than many other commodity or asset
prices (Regnier 2007). Recently, it has been claimed that “Wavelet filtering is
particularly relevant to volatile and time-varying characteristics of real world time
series.” (Chang and Fan 2008, p. 803).

To verify this, monthly real crude oil price volatilities were used to assess the
performance of the Â HTW algorithm in getting a smooth component without losing
the underlying characteristics of the respective series. Indeed, the input data consists
of the monthly real crude oil price volatility of the West Texas Intermediate
Cushing (WTI) and the Europe Brent real oil returns (expressed in $/bbl) for the
period January 1989–December 2007. The real crude oil market volatility Rit is
taken as the log difference of real crude oil price P:

Rit ¼ LogPt � LogPt�1

where Pt is the real crude oil price at date t.
The two transformed series are decomposed into their time scale components

using Â HTW which is redundant or non-decimated method. The wavelet filter used

7 We first decompose the original signal (monthly real crude oil returns) using the THW
transform. We then extract the smooth part from the signal. We will discuss this in more detail in
the following section.
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is the discrete low pass filter (G) of length, L = 6. The sifting processes produce six
level details which are captured by scale 1, scale 2,…, scale 6 plus the smoothed
series (Smooth) each containing (the total sample size) 228 samples. At each scale,
the corresponding component is reconstituted according to Eqs. (13) and (14).
Figure 2 plot the original series (signal), the details (scale 1 to 6) and the smoothed
series (smooth) for the real crude oil volatilities of US, UK, Germany, Canada and
Japan. The standard deviations (SD) of each detail are not uniform across the series
but proportional to the SD of the underlying signal. Since we use monthly data, the
level of details represents the variations within 2i months horizon which correspond
to 4–8, 8–16, 16–32, 32–64 and 64–128 month dynamics, respectively. All the
details are listed from the highest to the lowest frequency. The most short-run
fluctuations are observed in the two finest components scales 1, and 2 and some in
scale 3 which contain the high frequency content, so that they are extremely sen-
sitive to non-smooth data characteristics such as noise, jumps, and spikes in the
data. However, scales 4 to 6 depict medium and long-term fluctuations of the series.
As the wavelet resolution level increases, the corresponding coefficients become
smoother and the smooth trend (the coarsest approximation series) contains the
lower frequency movements.

One of the advantages of the wavelet transform is that it can be used to analyse
structural break at different time scales (Tommi 2005).

As noted in his article, Hamilton (2005) argues that nine of the last ten recessions
during the post- II World War period in the US were preceded by large increases in
oil prices. Suppose instead that we believe large oil shocks are followed by sharp
recessions. To do so, we first look at the recession history with a particular focus on
how each recession is preceded by a specific oil shock.8 Henceforth, shaded bars in
Fig. 2 indicate recessionary periods in months, as identified by Economic Cycle
Research Institute (ECRI) from 1989 to 2007 (available upon request). According
to ECRI dating, recession periods show some similarities and differences in the
growth of business cycles. All the countries experienced six (single or double
adjacent) recessions in the period studied (except for UK).9 These recessions took
place in 1990 (the mid-1990s Gulf war), 1994 (the Mexican Peso crisis), 1997 (the
East Asian financial crisis), 2000 (economic recession in US), 2004 (Argentine
energy crisis) and 2007 (the US mortgage subprime crisis). The 1994 recession in
US and Canada lasted longer than in UK, Germany and Japan. However, the 1997
recession was longer in the US and UK. The main difference in the business cycle’s
growth among these countries concerns the recession in 1990. This recession
started earlier in UK, US, Canada but 2 years later in Germany. On the other hand,
Japan experienced double recessions during the same period. The recession in early
2000 was long for UK, lasting about 2 years, and shorter for Japan; on the other

8 It is important to note that we do not attempt to analyse the causality between the crude oil spike
volatility and recessions but are just trying to examine graphically the correlation between them at
different time scale.
9 UK experienced only five recessions compared to the other countries.
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hand, two shorter recessions occurred close to each other during the same period for
US, Canada and Germany. The 2004 recession started and ended at about the same
time while Japan again had two recessions during this period. In 2006, Canada,

U
ni

te
d 

St
at

es

-1
0-5051
0

1
5

2
0

-4
0

-2
0

02
0

4
0

9
0

92
94

9
6

98
0

0
0

2
04

0
6

D
JI

A
W

TI
B

re
nt

R
ea

l R
e

tu
rn

s

05

1
0

1
5

2
0

02
0

4
0

6
0

8
0

1
00

1
20

9
0

92
94

9
6

98
00

0
2

04
0

6

D
JI

A
W

T
I

B
re

nt

C
on

d
iti

o
na

l V
a

ria
nc

e

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

9
0

9
2

9
4

9
6

9
8

0
0

0
2

0
4

0
6

P
ro

b
(s

t=
1

)
P

ro
b
(s

t=
2

)

U
ni

te
d 

K
in

gd
om

-1
0-5051
0

1
5

-1
0

-5051
0

9
0

92
94

9
6

98
0

0
0

2
04

0
6

F
T

S
E

1
00

W
T

I
B

re
nt

R
e

al
 R

et
ur

ns

0481
2

1
6

01
0

2
0

3
0

4
0

5
0

9
0

9
2

9
4

96
9

8
0

0
0

2
0

4
0

6

F
T

S
E

1
0

0
B

re
nt

W
T

I

C
o

nd
iti

o
na

l V
ar

ia
nc

e

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

90
9

2
9

4
96

98
0

0
0

2
0

4
06

P
ro

b
(s

t=
1)

P
ro

b(
st

=2
)

Fig. 3 The left panel monthly real stock market returns and the smoothed real crude oil
volatilities. The second panel the conditional variances obtained from the trivariate RS-BEKK-
GARCH model. The right panel smoothed probabilities of regime 1 and of regime 2 that the three
markets are jointly in regime 1 (high volatility regime) at time t and in regime 2 (low volatility
regime) at time t respectively. The shaded vertical bars indicate Growth Cycle recessions as dated
by ECRI “Economic Cycle Research Institute.” The sample period is January 1989 to December
2007, a total of 228 observations
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Germany and Japan sank into a recession at about the same time. However, this
latter crisis did not hit UK.

The obtained wavelet coefficients were used to identify characteristics of the
time-scale signal (smooth) that were not apparent from the original time domain
signal. Therefore, Fig. 2 (scales 1–6) show that crude oil volatility peak detections
are easily perceptible in the finest scales (short-term fluctuations of the series) as
well as in the coarsest scales (medium and long-term fluctuations of the series).
From these plots, it is easy to see which peak features are meaningful at any specific
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time in world history. For example,10 in levels 1–3, the wavelets capture well the
most intense volatility peak denoted by “A”, which has a value of 6 or 7 and occurs
in June/July 1990 for all the country cases. Essentially, this huge short-term real
crude oil volatility peak leads to the 1990s recession. On the other hand, low
frequency waves (scale 4–6) present fewer and thicker spikes with smaller lengths.
For instance, wavelet is capable of capturing the long-term real crude oil volatility
peak denoted by “B” which has a value of about 2 and occurs in 1999/2000. This
followed the early 2000s recession. These plots also highlight the wavelet’s strength
of detecting pertinent information at varying decomposition levels. It can be seen
that this evidence is also supported in the smooth series. Indeed, the studied period
began with a huge oil shock in 1990 (Japan has a second largest oil shock which
took place at the beginning of 2007). One can observe again that the spike of 1990
seems to be the historical spike at which the global economy can achieve a severe
crisis. After this dramatic increase in real crude oil volatility, political controls try to
stabilise the oil price trend. The second highest real crude oil volatility, which rises
and falls in a distinct series of spikes, was at the beginning of 2000 in almost all the
countries. Furthermore, it is unequivocal that there are several instances of coin-
cidence of recessions with crude oil volatility spikes identified by the smooth series.
Indeed, the initial spike volatility case was followed by a recession only for
Germany and Canada11 while the latter spike volatility case was followed by a
recession for all the economies. The other ECRI recession cases were preceded by
rather small oil shocks.

After verifying Hamilton’s assumption, we proceed with our analysis by
improving further Â THW effectiveness; that is the possibility of noise level
reduction while preserving the significant feature of the original signal. Indeed,
although the original signal (Fig. 2 (top left panel)) presents several peaks that
precede each identified international crisis, unfortunately they are noise
contaminated.

It is apparent from the plot of the smooth series (Fig. 2 (top right panel)) that the
noise is reduced but the peak height is also reduced slightly. Indeed, the smoothed
peaks and original unsmoothed peaks are not perfectly coincident. This is not
always the case as the presence of noise can shift the peak by 1–3 sample locations.
After undergoing the smoothing algorithm, the peak values are higher in amplitude
than the noisy peak, and this agreement is typical of the better quality data. Finally,
we could easily argue that the reconstructed signal has a simple and very smooth
fluctuation that allows for easy interpretation.

Further probing led to the discovery that each spike in the oil volatility series
was matched by transient instabilities in another economic indicator, including
stock market returns (Cologni and Manera 2009). Our interest lies in whether oil

10 This example is only illustrated in the case of Germany. The remaining figures generally report
the same behaviour.
11 A potential explanation of this result is that a prolonged recession occurred at the beginning of
1988 (not included in our dataset) was preceded by successive oil shocks and that conducted to the
recession of 1990 for US, UK and Canada.
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price changes affect the stock market returns. Figure 3 (left panels) plots real stock
returns and the smooth real crude oil returns for each country. The relationships
shown in this graph were correlative. Care has thus to be taken since correlation in
time does not imply causation. Bearing this in mind, the hypothesis posed was that
these recurring spikes of volatility in oil price destabilised the stock market returns.

3.3 Estimation Results of the Multivariate Markov
Switching Model

Having the true real crude oil volatility signal in hand, the analysis that follows
endeavours to investigate whether switches in this signal have a trend towards
higher stock market volatility in the five developed countries. In particular, we
assume that high volatility states coincide across the two markets and we use our
data set to inquire whether these states coincide with the main international crises.

The estimation of our trivariate BEKK MSG (1,1;2) as specified in Eq. (21)
already gives us five three-market combinations where each one contains three
variables: WTI real returns, Brent real returns and the respective individual real
developed-country stock market returns (i.e., US, U.K., Germany, Japan, and
Canada). We refer to the crude oil markets as “potential originators” and the stock
markets as “potential recipient markets” because we want to explore whether
shocks and volatilities originating from these markets are related with shocks and
volatilities of the stock markets as in the following pairs of markets12:

In order to reduce the computational burden, we allow the triple markets, i.e. the
recipient market (the stock market) and the two originator markets (WTI and Brent
crude oil markets) to share the same volatility state. In this trivariate formulation,
the number of states is six. For instance, for USA, we have the following six
primitive states (as for each country case):

st = 1: DJIA real stock return—low volatility, WTI—low volatility, Brent—low
volatility

st = 2: DJIA real stock return—high volatility, WTI—high volatility, Brent—
high volatility

The conditional variance H is specified as a BEKK representation where the first
element (h2s;st ) of the diagonal matrix follows a BEKK MSG (1,1;2) process and the

two other elements (h2w;st and h2b;st ) follow a constant. Regime switching is allowed
through the conditional mean intercepts and all the conditional variance parameters.

These choices allows us to refine our aim which consists essentially offinding out
whether shocks and/or volatilities originating from crude oil markets are transmitted
to stock markets under a jointly “high-high” volatility state or “low-low” volatility

12 This idea was inspired by that of Edwards and Susmel (2001), who analyse the behaviour of the
stock market volatilities for a group of Latin America countries using both univariate and bivariate
switching models.
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state. Edward and Susmel (2001) call the behaviour under this hypothesis “high
volatility synchronisation” which signifies that when the “originator market” is in a
high or low volatility state, the “recipient market” is always in the high or low
volatility state. Furthermore, we are interested in determining whether these iden-
tified transmissions happen around the time of the conventional international crises.

Therefore, it is important to use the best possible model specification. Accord-
ingly, assuming a BEKK structure, we consider two different models: (1) a standard
Trivariate GARCH model with p = q = 1 which we denote MG(1,1) and, (2) our
trivariate MSG (1,1;2).

In order to pick the most likely model, Table 1 summarises the critical values of
Likelihood Ratio (LR) test, suggested by Garcia and Perron (1996). The log
maximum likelihood values for the MMSG (1,1,2) models are higher than for the
case where no regime switching is allowed. Notice that the former performs much
better than the single regime model. Additionally, one can immediately see that the
MMSG ranks better than the MS model according to the SIC, HQC and AIC criteria
(not reported here).13

The results of estimating the multivariate Markov Switching GARCH model
with BEKK parameterisation for each conditional mean and conditional volatility
equation are reported in Table 2. Five triple-wise models are estimated and several
interesting findings merit attention. It can be seen from the results that the three
markets can be separated into two regimes. It is easy to interpret these two regimes.
The first regime (labeled st = 1) indicates that all the real returns are at the same time
in a “crash” state with low mean (aS, aW, aB) and high variance (c11, c22, c33).
Conversely, regime 2 (labeled st = 2) captures the behaviour of the real returns in
the recovery state with high mean and low variance. These states can differ sub-
stantially in durations.

We derived the transition probability matrix for the “originator” and “recipient”
markets. It was assumed that the probability law that causes the market to switch
among states is given by a K = 2 states Markov chain, P, with a typical element
given by Prob(st = j/st−1 = i) = pij. From the estimated transition probabilities P11
and P22, we can calculate the duration of being in each regime.14 In the case of
USA, the average expected durations of being in regime 1 and 2 are roughly equal
(6.5 months). The expected durations of being in regime 2 for the rest of country
cases are about two times higher than those of being in regime 1. Thus, high
variance states are less stable for UK, Germany, Japan and Canada. It is expected to
persist for as long as the low volatility state in the case of the USA.

One of the study’s key objectives is to find out whether the originator and the
recipient market states, assumed to be in a joint high-high volatility states, occur
around the identified international crises episodes. In other words, we verify

13 Diagnostic tests for the MG model are available on request.
14 the average duration of being in state 1 as suggested by Hamilton (1989) can be calculated as:
Di ¼ ð1� PiiÞ�1.
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whether the “volatility synchronisation” between the cycles of stock market and the
crude oil market happens around the conventional economic recessions.

To verify this hypothesis graphically, we plot the smoothed probability for the
two states st = j (j = 1,2) in the right panels of Fig. 3. These figures display both the
probability that crude oil market and stock markets are jointly in a high-volatility
state or state 1 (black line) and the probability that the two markets are jointly in a
low-volatility state or state 2 (grey line). The observations are classified following
Hamilton’s (1989) proposed method for dating regime switches. According to this
procedure, an observation belongs to state i if the smoothed probability Pr(st = i|ψt)
is higher than 0.5.

These figures show that regimes are seen to change frequently although the
states are quite persistent. Table 3 compares the ECRI turning points for the five
developed countries and the joint high—high volatility periods obtained from our
regime switching models. In order to concentrate on the transmission of high
volatility from the crude oil market to stock market, in the discussion that follows
we focus mostly on the upper line of the bottom panel. As regards the dating results
of the joint high—volatility regime, the model is able to delineate all the identified
international crises. Additionally, Figures show that around each of the identified
ECRI crises, crude oil and stock market jointly experience high volatility states.
The common contraction periods differ in length and severity. The duration of the 5
or 6 contractions range from 6 to 27 months for USA, from 5 to 24 months for UK,
from 2 to 33 months for Germany, from 3 to 44 months for Canada and from 2 to
23 months for Japan (see Table 3). The longest joint recession probability (a range
of two or more successive recessions occurring close to each other) is associated
with the 1996 East Asian crisis for USA and UK, the economic recession of 2000
for Canada and Japan and the 1990s Gulf war for Germany. Furthermore, it is
obvious that the oil shock of 1990 induces the longest joint recovery period lasting
about 3 years for Canada and Japan. In contrast, the oil shock of 2000 triggers the
longest common recovery period for USA, UK and Germany.

The estimations of the econometric models are reported in Table 2. we first
consider matrix Φ in the mean equation (Eq. 19), captured by the parameters μij in
Table 2, to see the link in terms of returns across the markets in each triple case.

Table 1 The likelihood ratio test

LnMMSG LnMS LR statistic

USA −833.7 −898.9 130.4a

UK −750.1 −782.7 65.2a

Germany −842.9 −889.4 93a

Japan −867.8 −886.7 37.8a

Canada −785.7 −833.4 95.4a

Note the LR test statistic approximately follows a χ2 distribution with three degree of freedom.
LnMMSG denotes the log maximum Likelihood value of the Trivariate Markov Switching GARCH-
BEKK model and LnMG designates the log maximum likelihood value of the Multivariate
GARCH-BEKK model. a denotes significance at the 1 percent level
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Table 2 Estimates of the trivariate BEKK-MSG model

Param. USA UK Japan Germany Canada

Mean equation

lss;st¼1 0.43723c

(2.533)
0.0667
(0.157)

−0.05047
(−0.063)

0.41293
(1.094)

0.37441a

(1.378)

lww;st¼1 −0.86701c

(−2.336)
−1.16371
(−0.69)

−0.57928
(−0.123)

−0.47747
(−0.656)

−0.23688
(−0.462)

lbb;st¼1 −0.81018c

(−4.234)
−1.10085
(−0.598)

−0.64003
(−0.127)

−0.7421
(−0.971)

−0.38566
(−0.557)

lss;st¼2 0.8655c

(4.122)
0.53434c

(2.786)
0.06613
(0.151)

0.69504c

(4.57)
0.41688a

(1.791)

lww;st¼2 0.753669c

(4.14)
0.71245a

(1.558)
0.60213
(0.66)

0.64799c

(2.697)
0.48967a

(1.747)

lbb;st¼2 0.81946c

(4.234)
0.76233a

(1.56)
0.67792
(0.683)

0.71545c

(2.86)
0.54541a

(1.604)

Variance equation

css;st¼1 1.01169c

(9.3243)
1.21839c

(9,802)
1.08123c

(2.761)
1.09181c

(7.126)
0.72372c

(5,453)

cww;st¼1 1.38159c

(14.069)
1.58813c

(3,002)
1.84192c

(8.559)
1.70612c

(7.316)
1.75198c

(13.123)

cbb;st¼1 1.41483c

(12.920)
1.71815c

(3,153)
1.89504c

(11.273)
1.7876c

(7.357)
1.83818c

(12.053)

css;st¼2 0.82333c

(5.2642)
0.79844c

(3,956)
0.64524c

(3.164)
0.24226
(0.7963)

0.65601
(1.226)

cww;st¼2 0.96959c

(17.407)
1.10553c

(11,223)
1.14041c

(3.760)
1.20845c

(16.091)
1.18165c

(12.373)

cbb;st¼2 1.0292c

(15.981)
1.13841c

(10,396)
1.19702c

(3.110)
1.27353c

(15.761)
1.23767c

(11.523)

ass;st¼1 −0.08768
(−1.287)

0.04765
(0.053)

0.35916
(1.032)

−0.16367a

(−1.472)
−0.4012c

(−3.828)

asw;st¼1 0.10004
(0.638)

−0.05232
(−0.804)

−1.1248
(−1.151)

0.56081a

(1.776)
−0.50581c

(−2.642)

asb;st¼1 −0.08387
(−0.603)

0.01302
(0.074)

1.05857
(1.113)

−0.57145c

(−2.108)
0.32392a

(1.894)

bss;st¼1 −0.09402
(−0.093)

−0.39355
(−0.132)

0.0000
(0.000)

0.60485c

(3.616)
0.67594c

(5.661)

bsw;st¼1 −4.84532
(−1.104)

−1.15252
(−0.166)

−0.61242
(−0.001)

−0.03723
(−0.045)

1.12084
(0.07)

bsb;st¼1 5.96062
(1.198)

1.01243
(0.163)

−0.02393
(0.000)

0.21019
(0.298)

−0.81552
(−0.064)

ass;st¼2 0.8655c

(4.122)
−0.67316c

(−2.327)
0.05621
(0.647)

0.21307c

(2.617)
0.23979c

(3.5347)

asw;st¼2 0.89084a

(1.795)
0.02,779
(0.048)

−0.34,526
(−1.185)

−0.11,484
(−1.296)

0.16,314
(1.116)

asb;st¼2 −0.27,778
(−0.739)

−0.06,521
(−0.303)

0.22,148
(0.981)

0.15,617a

(1.81)
−0.07,771
(−0.58)
(continued)
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The diagonal parameters μ11,st=2, μ22,st=2 and μ33,st=2 for all the modeled triples
equations are positively significant (except for Japan) and approximately equal
during expansion phases, suggesting that financial markets and crude oil markets
tend to become more stable and predictable during an expansion regime. For
instance, the average mean of the real DJIA return is 0.69 % while for the real crude
oil returns are 0.64 and 0.71 % (respectively for the WTI and the Brent). In contrast,
during high volatility states, these diagonal parameters are significant only for USA
and Canada (for Canada, only one of the three parameters is significant; μ11,st=1).
However, it is shown that while stock market returns appear to be positive, crude oil
markets are characterised by negative returns during recession states. This can
demonstrate that high volatility regime in crude oil markets are on average more
severe, whereas American and Canadian stock markets seem to be more resistant to
an economic slowdown. The Japanese case clearly distinguishes itself from the
remaining countries. It shows no significant effects on the means of any of the
parameters studied either during recessions or during expansions phases.

Results from the constant parameters of the variance equations show that all the
intercept terms except γ11,st=2 for Germany and Canada, are positively significant.
However, the amplitude of these parameters is reduced slightly when volatilities
switch simultaneously from state 1 to state 2. Interestingly, we observe again that

Table 2 (continued)

Param. USA UK Japan Germany Canada

bss;st¼2 0.19,619c

(3.125)
0.55,125c

(2.855)
0.98,334c

(64.439)
0.76,459c

(10.22)
0.95,601c

(74.63)

bsw;st¼2 4.99,591a

(1.703)
−1.02,577
(−0.155)

3.86,618
(0.026)

0.68,817
(0.186)

−1.28,347
(−0.005)

bsb;st¼2 −7.89,867c

(−2.389)
0.71,428
(0.14)

−2.97,633
(−0.032)

0.1982
(0.055)

0.84,935
(0.004)

Transition probabilities

P11 0.84,493 0.78,607 0.74,283 0.66,801 0.71,520

P22 0.84,671 0.87,895 0.85,757 0.85,954 0.81,371

Residuals diagnostics

Log-L −833.757 −750.196 −867.844 −842.985 −785.767

SIC −923.123 −839.488 −957.283 −932.351 −875.132

HQC −889.507 −805.918 −923.62 −898.735 −841.516

AIC −866.757 −783.196 −900.844 −875.985 −818.767

Notes The regime dependent covariance matrices H evolves according to a trivariate RS-GARCH
(1,1) equation with a BEKK representation. The diagonal elements “μ” in matrix Φ represent the
constant mean coefficients. While the diagonal elements “γ” in matrix Γ represent the constant
variance coefficients. Elements “α” in matrix A captures own and cross-market ARCH effects.
Elements “β” in matrix B measure own and cross-market GARCH effects. Subscribers: s, w, and b
denote real stock market returns, WTI and Brent real crude oil returns. Student-t statistics of
parameters are reported in parentheses. a, b, c denote statistical significance at 10, 5 and 1 %

100 R. Jammazi



Table 3 Reference and estimated recession periods extracted from the trivariate MS-GARCH
model

USA 1.1989M01–1991M02
(26 months)

1.1989M04–1989M09
(5 months)

a.1989M10–1989M12
(3 months)

2.1994M05–1996M01
(21 months)

1990M01–1991M05
(17 months)

1991M06–1991M09
(4 months)

3.1998M01–1999M09
(21 months)

1991M10–1991M12
(3 months)

1992M01–1993M08
(20 months)

4.2000M04–2001M11
(20 months)

2.1993M09–1994M10
(14 months)

b.1994M11–1995M04
(6 months)

2002M07–2003M02
(8 months)

1995M05–1995M06
(2 months)

1995M07–1996M01
(7 months)

5.2004M03–2005M08
(18 months)

1996M02–1996M06
(5 months)

1996M07–1996M11
(3 months)

6.2006M01–2007M12
(24 months)

3.1996M12–1997M07
(8 months)

c. 1997M08 (1 month)

1997M09–1999M03
(19 months)

1999M04–1999M12
(9 months)

4.2000M01–2000M05
(5 months)

d.2000M06–2000M09
(4 months)

2000M10–2001M01
(4 months)

2001M02 (1 month)

2001M03–2002M04
(14 months)

2002M05–2003M08
(16 months)

2003M09 (1 month) 2003M10–2005M06
(21 months)

5.2005M05–2005M10
(6 months)

e.2005M 11–2006M06
(8 months)

6.2006M07–2007M02
(8 months)

f.2007M03–2007M10

2007M11–2007M12
(2 months)

UK 1.1989M01–1991M04
(28 months)

1.1990M03–1990M05
(3 months)

a.1990M06–1990M07
(2 months)

2.1994M07–1995M08
(14 months)

1990M08–1992M03
(20 months)

1992M04–1993M11
(20 months)

3.1997M07–1999M02
(20 months)

2.1993M12–1994M11
(12 months)

b. 1994M12–1997M02
(28 months)

4.2000M01–2003M02
(38 months)

3.1997M03–1997M07
(5 months)

c. 1997M08–1997M11
(4 months)

5.2004M03–2005M05
(15 months)

1997M12–1999M02
(15 months)

1999M03–1999M06
(4 months)

1999M07–1999M10
(4 months)

1999M11–2000M03
(5 months)

4.2000M04–2000M06
(3 months)

d.2000M07–2000M11
(5 months)

(continued)
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Table 3 (continued)

2000M12–2002M01
(14 months)

2002M02–2003M02
(13 months)

2003M03–2003M04
(2 months)

2003M05–2005M09
(29 months)

5.2005M10–2005M11
(2 months)

e.2005M12–2006M08
(9 months)

2006M09–2006M10
(2 months)

2006M11–2007M03
(5 months)

2007M04 (1 month) 2007M05–2007M12
(8 months)

Germany 1.1991M01–1993M01
(25 months)

1.1989M03–1989M07
(5 months)

a.1989M08–1990M03
(8 months)

2.1994M12–1996M03
(16 months)

1990M04–1990M06
(3 months)

1990M07 (1 month)

3.1998M03–1999M04
(14 months)

1990M08–1991M05
(10 months)

1991M06–1991M09
(4 months)

4.2000M05–2002M03
(23 months)

1991M10–1992M12
15 months)

1993M01–1993M11
(11 months)

2002M09–2003M08 (12
months)

2.1994M12–1995M02
(3 months)

b.1995M03–1995M11
(9 months)

5.2004M04–2005M02
(11 months)

1995M12 (1 month) 1996M01–1996M03
(3 months)

6.2006M 11–2007M12
(14 months)

1996M04 (1 month) 1996M05–1997M11
(19 months)

1997M12–1998M03
(4 months)

1998M04–1998M06
(3 months)

3.1998M07–1998M09
(3 months)

c.1989M10 (1 month)

1998M11–1999M01
(3 months)

1998M02–1999M03
(15 months)

4.2000M04–2000M07
(4 months)

d.2000M08–2000M11
(4 months)

2000M12–2001M01
(2 months)

2001M02 (1 month)

2001M03–2001M07
(5 months)

2001M08–2001M09
(2 months)

2001M10–2001M12
(2 months)

2002M01 (1 month)

2002M02–2002M03
(2 months)

2002M04–2003M01
(10 months)

2003M02–2003M04
(3 months)

2003M05–2004M11
(19 months)

5.2004M12–2005M01
(2 months)

e.2005M02–2005M09
(8 months)

2005M10–2005M11
(2 months)

2005M12–2006M02
(3 months)

6.2007M03–2007M04
(2 months)

f.2007M05–2007M12
(8 months)

(continued)
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Table 3 (continued)

Canada 1.1989M01–1991M02
(26 months)

1.1989M04–1989M08
(5 months)

a.1989M09–1990M07
(11 months)

2.1994M11–1996M06
(20 months)

1990M08–1991M06
(11 months)

1991M07–1991M12
(6 months)

3.1997M07–1998M07
(13 months)

1992M01–1992M03
(3 months)

1992M04–1993M11
(20 months)

4.2000M01–2001M09
(21 months)

1993M12–1994M02
(3 months)

1994M03–1994M04
(2 months)

2002M06–2003M06
(13 months)

2.1994M05–1994M06
(2 months)

b.1994M07–1995M08
(14 months)

5.2004M04–2005M03
(12 months)

1995M09 (1 month) 1995M10–1996M02
(5 months)

6.2006M01–2007M12
(24 months)

1996M03–1996M04
(2 months)

1996M05–1996M07
(3 months)

1996M08 (1 month) 1996M09–1997M11
(3 months)

3.1997M12–1998M07
(8 months)

c. 1998M08/M10
(2 months)

1998M09 (1 month) 1999M06 (1 month)

1998M11–1999M05
(7 months)

1999M11–2000M02
(4 months)

Japan 1.1989M01–1989M05
(5 months)

1.1989M05–1989M06
(2 months)

a.1989M07–1990M01
(7 months)

1990M03–1993M12
(46 months)

1990M02–1991M04
(15 months)

1991M05–1993M10
(30 months)

2.1994M12–1996M01
(14 months)

2.1993M11–1994M10
(12 months)

b.1994M11–1996M04
(18 months)

3.1997M03–1998M04
(14 months)

1996M05 (1 month) 1996M06–1997M01
(8 months)

4.2000M08–2001M12
(17 months)

3.1997M02–1997M03
(2 months)

c.1997M04–1997M11
(8 months)

5.2004M01–2004M11
(11 months)

1997M12–1998M04
(5 months)

1998M05–1998M12
(8 months)

2005M04–2005M10
(7 months)

1999M01/09
(2 months)

1999M02–1999M08
(7 months)

6.2006M04–2006M09
(6 months)

2000M02–2000M05
(4 months)

1999M10–2000M01
(4 months)

2007M08–2007M12
(5 months)

4.2000M11–2001M06
(8 months)

2000M06–2000M10
(5 months)

2001M09–2002M05
(9 months)

d.2001M07–2001M08
(2 months)

2002M10 (1 month) 2002M06–2002M09
(4 months)

2002M12–2003M04
(5 months)

2002M11 (1 month)

(continued)
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the volatility of crude oil returns is lengthened more than the volatility of the stock
market returns in both states. Thus, high crude oil market volatilities have the
potential to damage the conditions of economic growth much more and so these
volatilities might be the primary cause of financial market turbulence.

To demonstrate the stock market’s response to crude oil market movement,
Table 2 shows the estimated interaction parameters between the degrees of turbu-
lence or stability emanating from real crude oil volatility series to real stock market
returns.

As a result, we find that almost two stock markets utilised in our analysis are
affected by news (i.e. shocks) and volatility generated from their own markets,
namely Dax30 and TSX during joint recession state. However, almost all the
markets are affected by news (except for Japan) and volatility generated from their
own markets during the joint expansion state.

Table 2 provides results from estimating the model using equity markets and
WTI, Brent crude oil markets subscribed by the letters s, w and b respectively.

The results apparently indicate that FTSE 100 and NIKKEI 225 stock market
returns do not receive significant shocks/volatility originating from crude oil mar-
kets during either joint high volatility state or joint low volatility state.

Therefore the biggest danger to financial stability does not seem to have come
from high increases in crude oil market volatility.

As shown in the second panel of Fig. 3, excepting the abnormal increase (during
early 2000 and 2005 for Japan and UK respectively),15 UK and Japanese stock
market volatilities remain static over all the period despite the presence of large
spikes in the volatility of crude oil markets. Henceforth, UK and Japanese equity

Table 3 (continued)

5.2004M11
(1 month)

2003M05–2004M10
(18 months)

2005M09
(1 month)

e.2004M12–2005M08
(9 months)

6.2006M08–2006M10
(3 months)

2005M10–2006M07
(10 months)

2007M04–2007M06
(3 months)

f.2006M11–2007M03
(5 months)

2007M08 (1 month) 2007M07 (1 month)

2007M09–2007M12
(4 months)

Note: *Growth rate cycle peak and trough dates from 1989 to 2007 (source: Economic Cycle
Research Institute (ECRI)). Figures in parentheses indicate the average length of the period in
month

15 Britain and Japanese stock market volatility saw an unprecedented rise of about 50 % (in 2005
and 2000 respectively) followed by rapid reversals. These meteoric rises may not be explained by
any change in oil (or fundamentals), which barely changed during this period but may be
indicative of explosive bubbles (e.g. the UK housing market bubble of 2004–2005).
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market returns are not interrelated during the last 20 years in spite of the heavy
dependency on oil.16 This may indicate the important role that improvement in
energy efficiency plays in reducing oil shock transmission to the volatility of the
stock market. Indeed, according to the data of IEA (2009), UK and Japan have had
the lowest primary energy intensities of any countries since the 1970s oil shock,
indicating a higher efficiency than the other developed countries. Together, high
volatility states in stock markets may be affected by diverse factors other than oil
shocks such as interest rates or exchange rates (Apergis and Miller 2009).

The recessionary WTI (Brent) oil price shocks are positively (negatively) and
significantly transmitted to the high volatility state of the German Dax 30 stock
market. Then this transmission intensity switches to the joint recovery state and
becomes negative (positive) and insignificant (significant) with 5 times lower
amplitude. The finding for Canada can be interpreted in a similar way as for
Germany with a difference in the amplitude and the sign of the coefficients αsw,st=1
and αsb,st=2 where the oil shock transmission switches from negative (positive) and
significant during simultaneous high volatility state to positive (negative) and
insignificant with a 3 times lower amplitude during simultaneous low volatility
state. However, there is no evidence of volatility transmission running from the
crude oil market to stock market.

This finding suggests that recessionary “external oil shocks”17 (WTI) affect the
German and Canadian (Brent) stock markets by increasing their volatilities. On the
other hand, reaching the expansion regime, the underlying shocks negatively affect
the stock market volatility and their transmission intensities become much less
pronounced or even insignificant. In contrast, the opposite happens for “domestic
oil shocks”. Indeed, they stabilise the underlying stock markets by decreasing their
volatilities during the joint recessionary state. This may highlight the decreased role
that hedging policy efficiency plays in order to neutralise any potential oil price
impact (particularly “external oil shocks”) on the volatility of the stock market.

16 Japan imports all of its oil. It is considered the third largest oil consumer in the world (behind
US and China) and the second largest net importer of oil (behind US) in spite of its limited
domestic oil reserves and production. UK is largest producer of oil and natural gas in the European
Union but it cannot produce enough oil to meet its domestic demand (EIA 2008).
17 Brent oil is, by definition, produced from Europe (UK), Africa and the Middle East (Brent
North Sea crude). However, WTI oil is produced from North America (North America crude such
as Canada). In what follows, we denote WTI oil shock as “External oil shock”, i.e. extra-North sea
oil shock, for European countries like Germany and as “Domestic oil shock” for American
countries like Canada. In the same way, we denote Brent oil shock by “External oil shock”, i.e.
extra-American oil shock (North America as well as South America), for American countries and
as “Domestic oil shock” for European countries.
In 2006, Germany is the fourth largest net-oil importing country (it imported 2.483 million

barrels of crude oil per day to meet most of its oil needs). It was dependent on external oil sources
even in peacetime. The top three sources of German crude oil imports were Russia (34 %), Norway
(16 %) and UK (12 %) (Hsing 2007). Furthermore, Canada is both an exporter and importer of
crude oil. From Stats Canada for 2005, domestic crude accounts for only about 45 % of Canada’s
oil consumption. Imports represent the remaining 55 %, mostly coming from North Sea Countries
(UK and Norway) or the Middle East (Iraq, Saudi Arabia…etc.).
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Decision makers are advised to drive domestic oil production and seek renewable
energy technologies in order to reduce its reliance on foreign oil.

It should be emphasised, as shown in Fig. 3 (second panels) for Canadian and
German cases, that these transmissions were concentrated during the 1999–2004
period of severe worldwide economic contractions (the bursting of the equity
bubble of 1990, the US terrorist attack and the Enron scandals in 2001, the
Argentine energy crisis, the Iraq disarmament crisis). They were opposite and
weaker than those observed before and after these crises periods. Indeed, as clearly
illustrated in these figures, the conditional variances of TSX and Dax30 varied
dramatically over the 2000–2003 period which coincides with the sharp increases in
oil volatility. Together, as previously demonstrated in Sect. 3.2, these respective
low frequency components of crude oil volatility shock take longer period to sta-
bilise. Moreover, especially in the case of Canada, real Brent is more volatile and
therefore far more vulnerable to the real TSX than do the real WTI.

The US stock market response differs systematically from that of other oil-
importing countries. Table 3 shows that the crude oil market does not transmit any
signals (shock or volatility) to the DJIA stock market return during a common
recession state. The significant coefficient on α12,st=1 shows that shocks ofWTI arising
during simultaneous lowvolatility states are transmitted positively and significantly to
the DJIA stock market. There is also evidence of positive (negative) volatility
transmission fromWTI (Brent) oil market (β12,st=2 and β13,st=2) to the US stockmarket
during those same periods. In addition, the DJIA stock market volatility is very
sensitive to volatility coming from crude oil returns (4.9 and 7.8), underlying the
major role that crude oil plays in this country as the largest oil importer.18

The positive transmission of the WTI’s shock/volatility to the expansion phase
of the USA stock market may underline the latter’s greater vulnerability to
shocks/volatilities from American sources of crude oil prices19 than from the
North Sea crude oil prices, but not to the point of leading to a stock market
crash. In fact, with the declining production volumes of the Brent fields, more of
the North Sea crude oil supply is being absorbed locally and less is available for
sale to the USA. US dependence on the Brent crude fell sharply; this sudden
change can be explained mainly by the rapid increase in oil demand by high
growth countries particularly China and India,20 the so-called “US Middle East

18 According to US energy information Administration 2008, USA is the world’s largest net
importer of crude oil. It imported 10,984 thousand barrels per day, followed by Japan (4652) and
China (3858).
19 In 2000, North and South American countries particularly Canada (17.8 %), Mexico (14.2 %),
Venezuela (14 %) supplied much more crude oil to the USA. However, Middle East countries
(Saudi Arabia and Iraq) provide less than 23 % of USA oil imports, 25 % comes from African
countries (Nigeria, Angola and Algeria), and less than 3 % from European countries (UK,
Norway). (http://import-export.suite101.com/article.cfm/usa_oil_imports_by_country_2007).
20 In 2008, Chinese crude oil imports, largely concentrated in the volatile Middle East, was
roughly 4 times higher than in 1978 (Leung 2010).
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oil independence”21 (Kraemer 2006), as well as by the improvements made in
energy efficiency by the US policy to reduce the inflationary effects of oil shocks.
As a result, the decreasing US dependence on Brent crude may help make the
stock market more resilient to the disruption of Brent supplies.

It can be concluded from these findings that the increased dependence on
American crude oil supplies and the decreased dependence on North Sea crude oil
supplies (the most unstable countries in the world) may be welcomed in the stock
market.

The economic intuition for our main findings is most easily explained with
reference to the second panel of Fig. 3. In this panel, the crude oil variances vary
considerably over time and low spikes (state 2) are associated with very moderate
investments in stocks (see the period 1999–2004). In contrast sharp spikes (state 1)
are associated especially with small stock and reduced allocations (the two sub-
sequent high volatility periods occurred in 1990 and the other one in 2007).
Because regimes are persistent, short-horizon investors clearly attempt to time the
market by reducing (increasing) the allocation to the riskiest assets when investment
opportunities are poor (good) based on the information offered by the crude oil
market volatility.

As there is no spillover effect between the stock market and crude oil market for
USA during the joint high volatility state, there is limited potential for making
riskless excess profit on the US stock market in much less time based on infor-
mation from WTI, for example. Except for these periods, volatility in US equity
markets remained generally low.

4 Summary and Concluding Remarks

In this paper, we use monthly stock market prices and two crude oil data (WTI and
Brent) for a group of five developed countries (USA, UK, Germany, Japan and
Canada) to quantify the magnitude and time-varying nature of volatility spillovers
running from the crude oil market to the equity markets (DJIA, FTSE100, Dax30,
NIKKEI225 and TSX).

With the objective of finding the most efficient way to model the behaviour of
crude oil price volatilities, we use wavelet filtering, particularly Trous Haar wavelet
decomposition method, as it has already proved it can provide a better insight into
the dynamics of financial time series.

Moreover, most studies assume that the relationship between variables (espe-
cially asset returns) is generated by a linear process with stable coefficients so the
predictive power of state variables does not vary over time. However, there is

21 Indeed, many American politicians (President George W. Bush, among others) had worked
toward US energy independence in order to reduce US imports of oil and other foreign sources of
energy (see also “US energy independence” article from Wikipedia, http://en.wikipedia.org/wiki/
United_States_energy_independence).
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mounting empirical evidence that spillover parameters follow a more complicated
process with multiple “regimes”, each of which is associated with a very different
distribution of asset returns. The restricted trivariate BEKK MSG model used in our
analysis is quite general and allows means, variances and parameters of shock/
volatility transmission to vary across states. Hence assuming that the two variables
are in common states, the stock market return can vary across states in response to a
shock or volatility originating from the crude oil market.

The results show that the Â HTW decomposition method appears to be an
important step towards obtaining more accurate results. Indeed, we find that it seems
to be very useful in detecting break-points, which implies that crude oil shock
intensity varies significantly through time. Further, the resulting signals are smooth
and give us a better approximation or reconstruction of the original signal. We also
improve accuracy of this variable in detecting key real crude oil volatility features.

On the other hand, the trivariate BEKK-MSG estimations suggest that there are
quite close connections between the joint equity and crude oil high volatility state
and international recessions. Additionally, apart from UK and Japanese cases, the
responses of the stock market to an oil shock depend on the geographic area for the
main source of supply, be it from the North Sea or from North America (as we take
two oil benchmarks, WTI and Brent respectively). Then, for Germany and Canada,
external oil sources contribute more to causing a stock market crash even though
these countries import less oil from abroad (Western America for Germany and
Europe for Canada. However, oil shocks originating from Eurasian or European
countries (North America) appear to be far less vulnerable.

The results for the US stock market volatility response to the crude oil shock and
to volatility are different. Indeed, WTI crude oil volatility (American sources of oil)
increases the DJIA stock market volatility, whereas the latters exhibit the inverse
reaction to Brent crude oil. The US stock appears to be more resilient to crude oil
shocks since even they exist they do not lead to a potential stock market crash.

However, Japanese and Britain equity markets do not show any reaction to
shocks and/or volatilities coming from crude oil market.

Our results might be of interest to:

(1) investors; results show that the current crude oil market state is a persistent
bear state with more attractive assets than in a bull crude oil market state.

(2) Monetary policy makers; the results obtained suggest that there are diver-
gences between the hedging performance of WTI and Brent. For example, the
presence of a positive transmission of the temporary WTI oil price shocks to
the recessionary stock market phase highlights that the hedging policy in
Germany is less efficient to neutralise the WTI oil price effect on the volatility
of the German Dax30 stock market. Reaching the expansion phase, the
opposite occurs but shocks take longer to stabilise. Here, monetary policy may
play a more active role as a
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(3) Energy policy makers; since German stock market may be more vulnerable to
a WTI shock than a Brent shock (the inverse case for Canada), the government
should import little to no oil from the main production countries of WTI crude
but diversify sources and promote incentives for developing alternative energy
sources (both in industrial and household sectors); this would reduce depen-
dence on any one area outside the Brent crude main source countries. Con-
versely, the results for the US case can be attributed to the successful efforts of
American policy makers to promote efficient energy since it depends mostly
on WTI.
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Forcing Variables in the Dynamics of Risk
Spillovers in Oil-Related CDS Sectors,
Equity, Bond and Oil Markets
and Volatility Market Risks

Shawkat Hammoudeh and Ramazan Sari

Abstract This study examines migration and cascading of credit default swaps
(CDS) risks among four oil-related sectors -autos, chemical, oil and natural gas
production, and utility—in two models. Model 1 encompasses fundamental vari-
ables, and Model 2 includes market risks. The key finding of the study suggests that
replacing the two financial fundamental variables (the 10-year Treasury bond rate
and the S&P 500 index) of Model 1 with the two market risk variables (the S&P
VIX and the Oil VIX) of Model 2 reduce the long- and short-run risk migration and
cascading in the second model for both the full sample and the subperiod. The CDS
and VIX indices both reflect fear and risk on their own. Among the four oil-related
CDS spreads, the chemical and auto spreads are the most responsive to the other
credit and market risks and the fundamentals in the long-run, while those of utility
and oil and natural gas sectors are not responsive. The recent quantitative easing in
the United States adds to spikes in the levels of the chemical CDS and the S&P 500
index in Model 1, and to the S&P VIX and default risk spread in Model 2.
Implications for model builders and policy makers are also discussed.
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1 Introduction

Oil is the most wildly traded commodity and one of the most volatile commodities
in the world. It plays a pivotal role in the modern economy since its impacts
dominate many economic sectors including the oil-related sectors: automobile,
chemical, oil and natural gas, and utility. Given the high volatility of this com-
modity, companies that deal with oil, whether as an output, a fuel or a feedstock,
have opted to protect themselves by buying counterparty risk protection contracts
against volatility and default events. These companies in those oil-related sectors
buy credit default swaps (CDS) to protect themselves from credit risks related to
events that impact the oil markets and the overall economy.

The CDSs for these oil-related sectors are pertinent measures of expected credit
risk and fear in these sectors, which is relevant information on movements of oil
prices and changes in the business cycles. Each of these sector CDSs may also
relate to or reflect fear in other oil-related sectors, the stock market, and the gov-
ernment and private bond markets. It will be interesting to discern risk migration
and the lead/lag causal relationships between these sector CDS indices and changes
in the oil, bond and stock markets. The oil credit risk which is represented by these
oil-related CDSs may also have directional relationships with credit risks of the
expected volatility in the stock and bond markets. The credit risks of the equity and
bond markets are measured by the CBOE volatility equity index VIX and the credit
risk spread which is the difference between the Baa bond rate and the 10-year
Treasury bond rate.

Similar to the rest of CDS sector indices, the oil-related CDS indices for the
automobile, chemical, oil and natural gas production, and utility sectors are highly
liquid, standardized credit securities that trade at a very small bid-ask spread. The
CDS indices can be efficient at processing information on evolving risks in various
sectors of the economy (see Norden and Weber 2004; Greatrex 2008, among
others). The magnitude of the oil and oil-related sector credit spreads gauges the
default risk exposure of the firms in the oil-related sectors. A widening of a CDS
spread in response to certain oil or credit events indicates an increase in the level of
credit risk in the pertinent sector, while a narrowing spread shows a decrease in the
credit risk.

Several studies examine CDS indices for specific major sectors of the U.S.
economy but not for the oil-related sectors. Berndt et al. (2008) assess the variations
in the risk premium that forms a major component of the CDS spread for the U.S.
corporate debt at the firm level in three sectors: broadcasting and entertainment,
health care, and oil and gas for the period 2000–2004. Raunig and Scheicher (2009)
compare the market pricing of the default risk of banks and non-banks before and
after the 2008 financial crisis, using monthly data. Using the decomposition of the
CDS premia (or market prices) divided as the expected loss and the risk premium,
their results demonstrate that the CDS traders had drastically changed their judg-
ments on the riskiness of banks after the crisis by viewing these financial institu-
tions as at least as risky as the other firms. Hammoudeh and Sari (2011) employ the
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Autoregressive Distributed Lag (ARDL) approach to uncover the relationship
between the financial CDS spread indices of the banking, financial services and
insurance sectors and short- and long-term Treasury securities and the S&P 500
index. However, those authors do no account of other measures of financial stress
and credit risks such as the default risk spreads and the expected volatility risk.
More recently, Stanton and Wallace (2011) examine the relevance of the ABX.HE
indices, which track CDSs on the US sub-prime residential mortgage-backed
securities (RMBS), to the mortgage default rates during the financial crisis. Their
results cast doubts on the suitability of the prices of the AAA ABX.HE index CDS
as valuation benchmarks. Hammoudeh et al. (2013) examine the CDS spread
indices for three financial-sectors, banking, financial services and insurance- in the
short- and long-run and find the individual dynamic adjustments to the equilibrium
to be different for those sectors.

To our knowledge, no published research has examined the CDS sector indices
using the ARDL approach to figure out the relationship between the forcing vari-
ables in the four oil-related CDS sector indices and changes in the oil, equity and
bond markets, equity VIX, oil VIX and default risk spread. The advantage of
ARDL is that it allows one to define equations individually for all cointegrating
vectors even if the variables have a mixed order of integration. Thus, the ARDL
approach helps to define the forcing variables. The objective of this paper is to
explore the lead/lag relationships between the risk and fundamental variables and
examine risk migration between the market and credit risks in the oil-related sector
CDS indices. We seek to fill the gap and complement the previous studies on sector
CDS indices by focusing on the four oil-related sector CDS indices and their
forcing variables, be they the fundamental variables or the market risk variables.
These oil-related sectors are among the top S&P sectors.

The findings of our study underscore the relative importance of the CDS risks of
the cyclical chemical and auto sectors over those of the utility and oil and natural
gas production sectors. They also highlight the relative significance of the financial
and oil fundamentals over the volatility market risk measures such as the equity
VIX, oil VIX and default risk spreads.

This paper is organized as follows. Following this introduction, Sect. 2 presents
the descriptive statistics of the series, and Sect. 3 gives a summary of the relevant
literature. Section 4 discusses the methodology and the results, and Sect. 5
concludes.

2 Data and Descriptive Statistics

The data series include the closings for the CDS sector indices for the auto,
chemical, oil and natural gas production and utility sectors, the 3-month West Texas
Intermediate (WTI) crude oil futures price, the 10-year Treasury bond rate
(DGS10), the default risk spread (DFR) and the measures of expected equity, and
oil volatility indices, VIX and OVX respectively. The data on the four CDS series
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were obtained from DataStream, and on WTI were sourced from the database of
Energy Information Administration (EIA). Moreover, the data on the default risk
spread and the 10-year T bond rate were accessed from the database of the Federal
Reserve Bank of Saint Louis, and on the S&P 500 VIX and the oil OVX were
obtained from CBOE’s Market Statistics Summary Data. All variables are
expressed in the logarithmic form. The four oil–related CDS indices, particularly
the auto and chemical indices, register a jump around January 2009, displaying
greater default fear near the end of 2008 and beginning of 2009 (Fig. 1). This
default fear is also reflected in the S&P VIX and the oil VIX around that time.
Correspondingly, there is a dip in the S&P 500 index and the WTI.

The expected market volatility indices are for the equity market (S&P VIX) and
the oil market (oil VIX).1 It’s worth noting that the series for the oil VIX started on
May 10, 2007. We examine these series for the full period January 2, 2004 to July
13, 2011. Thus, the series do not include the oil VIX over the whole sample.
However, the subperiod June 1, 2009 to July 13, 2011 spanning the recovery period
after the 2008/2009 Great Recession includes the oil VIX. The dummy variables
QE1 and QE2 represent quantitative easing for the second half of 2009 and first half
of 2010, respectively.

CDS sector indices, which are based on the most liquid 5-year term, are equally
weighted and reflect an average mid-spread calculation of the given index’s con-
stituents. These proprietary indices are rebalanced every six months to better reflect
liquidity in the CDS market. The identification of the CDS sector indices follows
the DJ/FTSE Industry Classification Benchmark (ICB) supersectors as their basis
and reflects the price performance of a basket of corporate 5-year CDSs within a
given sector. As stated, the data for the CDS sector indices are available from 2004
only. The years 2004–2007 of the full sample for the CDS market were rapid
growth years. However, the years 2008–2009 were troubling years for this market,
which experienced fiscal stimulus packages and two monetary quantitative easings.
The economic recovery years of 2009–2011 make up our subperiod.

As indicated above, the equity VIX is an index which measures expectations of
volatility of the S&P 500 index and typically moves in an adverse direction to the
latter. That is, an increase in equity VIX is associated with a decrease in the S&P
500 index to reflect fears in the equity market. VIX assembles risk information on
events related to more than the stock market. In fact, the equity VIX increased by
more than 30 % in the week following the major earthquake with a magnitude of
9.0 in Eastern Japan on March 11, 2011. This index has sentiment extremes where
the range (30–32) signals excessive bearishness in the stock market that fore-
shadows bullish reversals, while (16–18) signals excessive bullishness that presages
bearish reversals.

1 Each volatility index series has a given number of reference entities at a fixed coupon. The
coupon is determined prior to the onset of each index series, and is the current spread of the
underlying reference entities that equate the value of the index to par value (100 %) at the time of
calculation. The levels of the indices are calculated at the end of each business day at around
5:15 pm.
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Fig. 1 Historical evolution of
CDS, VIXs and oil price.
Notes All the oil–related CDS
indices, particularly the auto
and chemical indices, have a
spike around January 2009.
This is also reflected by the
S&P VIX and oil VIX. All
variables are in a logarithmic
form
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Oil VIX, ticker OVX, is the CBOE crude oil ETF volatility index which mea-
sures the market’s expectations of 30-day volatility of crude oil prices by applying
the VIX methodology to the United States Oil Fund (USO) options spanning a wide
range of strike prices. Its range since its inception on May 10, 2007 is 25.42–
100.42. Unlike the S&P VIX, which typically rises when there is panic in the U.S.
stock market and equity prices fall, the OVX goes up as oil prices, which incor-
porate a fear component, also increase. When there is uncertainty in the crude oil
market, both oil prices and the OVX are more likely to rise in tandem because the
tail risk is to the upside rather than the downside. Thus, the oil VIX is positively
correlated with oil prices because higher risk levels will increase oil prices rather
than discount them. There are those who believe that oil VIX can predict oil prices
(Jagerson 2008).

Finally, the default risk spread is the difference between the corporate BAA bond
rate and the 10-year Treasury bond rate, which measures the rises and falls in
corporate credit risk in anticipation of recessions and booms, respectively.2 A rise in
the default risk spread presages a decline in economic activity and vice versa.

The descriptive statistics for the first logarithmic (L) differences of the series are
presented in Table 1. The average percentage change over the sample period is the
highest for the WTI futures price, followed by the CDS indices for the utility and
oil/natural gas production sectors. It is negative for the 10-year Treasury bond rate
(DGS10). In sum, the average return for the futures oil price is much higher than for
any of the CDS sector indices.

The highest percentage change volatility as measured by the standard deviation
is for the S&P VIX, followed by the 10-year Treasury bond rate (DGS10) over the
full period. The lowest volatility is for the utility CDS index, followed by the WTI
oil futures price. It is interesting to note that the volatilities for the S&P VIX, the
10-year Treasury rate, and the CDS indices of auto and chemicals in Table 1 are
similar on the relatively high side, while those for CDS indices for utility, oil and
gas production and the oil futures price are close on the low side. The volatility for
oil VIX and default risk comes in the middle of the spectrum. In sum, the volatilities
of the four oil-related CDS indices are dissimilar.

The series of the auto and chemicals CDS indices and the 10-year Treasury rates
are skewed to the left over the full period, suggesting that the mass of the distri-
butions for these three series is concentrated on the right of the figure, and have a few
extremely low values in the distributions. This means the spreads for the returns of
these series are bunched up on the high end of the spread scale. In comparison, the
utility, oil and gas CDS indices, S&P VIX, oil VIX, and DFR are skewed to the right.

The kurtosis results indicate that the distributions of the series are more lep-
tokurtic (peaked with fat tails) for the returns or first log differences over the full
period. The Jarque-Bera statistics reject the null hypothesis of a normal distribution
for all the series during the full period. This result is consistent with the statistics for
skewness and kurtosis for most speculative assets.

2 The BAA rate has more default risk than AAA which is almost close to zero default.
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The ADF and Phillips-Perron (PP) unit root tests for the intercept and the
intercept plus trend were calculated for all variables over the full period and the
subperiod. The unit root results are mixed for the subperiod, indicating that some
variables are I(1) while others are I(0). A summary of these results is reported in
Table 2 for the full period for both models. It can be contended that the VIX’s are
implied option volatility indices, and thus are proxies for option prices. This
explains why VIX has a unit root behavior. The same logic applies for the CDS
indices. Due to limited space, the results for the subperiod are not presented but are
available on request.

These results warrant the use of the ARDL approach. We also run the Johansen-
Juselius cointegration technique for the model with the same order of integration.3

3 Review of the Literature

Data series on the CDS sector index spreads start in 2004. Therefore, the literature
on these credit risks is still quite sparse, particularly studies that examine the 2008
financial and 2010 sovereign debt crises. As indicated above, the available studies
deal with financial sectors’ CDS indices (see Stanton and Wallace 2011;
Hammoudeh et al. 2013, among others). Clearly, there is a substantial scope for
contributions in this area, particularly on oil-related sector CDSs.

Table 2 Unit root tests for Models 1 and 2 (full period)

ADF PP Model 1 Model 2

LAUTCD I(1) I(1) √ √

LCHECD I(1) I(1) √ √

LOILCD I(1) I(1) √ √

LUTICD I(1) I(1) √ √

LOILVIX N/A N/A

LSPVIX I(1) I(0) √

LDGS10 I(1) I(1) √

LDFR I(1) I(1) √

LWTI3M I(1) I(1) √ √

LSPINDEX I(1) I(1) √

Notes ADF stands for augmented Dickey-Full test while PP represents the Phillips-Parron test.
Number 1 refers to I(1), while 0 indicates I(0). The symbol √ refers to the variables included in
each model. The unit root test for the subperiod for the models indicates more I(0) than I(1) and
they are available upon request. N/A means that the variable is not applicable to this model

3 We will not report the results for the Johansen-Juselius approach due to the lack of space. Those
results are available from the authors.
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The recent CDS literature examines the difference between the spread in the
cash/asset market and the CDS credit market, known as the “basis” (Das and
Hanouna 2006). Longstaff et al. (2005) examine the basis using an approach that
extracts the corporate bond-implied CDS spreads. When comparing it with the
actual market CDS spreads, they find the corporate bond-implied CDS spreads to be
higher.

Berndt et al. (2008) investigate the variations in the credit risk premium that
comprises a major component of the CDS spread for three sectors, namely
broadcasting and entertainment, health care, and oil and gas. They find striking
differences in the spread variations between these sectors. Zhang et al. (2009) use
an approach that identifies the volatility and jump risks of individual firms from
high frequency stock prices to explain the CDS premium. Their empirical results
suggest that the volatility risk alone predict 48 % of the variations in CDS spread
levels, whereas the jump risk alone forecasts 19 %. After controlling for credit
ratings, macroeconomic conditions, and firm balance sheet information, they pre-
dict 73 % of the total variations. Simulation results suggest that the high frequency-
based volatility measures can help explain the credit spreads above and beyond
what is already captured by the true leverage ratio.

Other studies have examined the relationships between the equity and credit
markets using time series instead of cross section data, as in the cases discussed
above. Bystrom (2006) examines the properties of the Dow Jones iTraxx index,
which is an index of CDS securities on 12 European reference entities. He finds that
the CDS spreads are significantly autocorrelated in the seven sectors comprising the
iTraxx index, and are also significantly negatively related to the contemporaneous
stock returns in all sectors, except for energy, consumers, and financials.

Fung et al. (2008) study the relationship between the stock market and high yield
and investment grades and the CDS markets in the United States and find that the
lead/lag relationship between them depends on the credit quality of the underlying
reference entity. Forte and Lovreta (2008) examine the relationship between
company-level CDS and stock market-implied credit spreads (ICS) in recent years.
They find the relationship to be stronger, and the probability that the stock market
leads in the price discovery to be higher at lower credit quality levels. However, the
probability of CDS spreads leading in the price discovery rises with increases in the
frequency of the severity of credit downturns.

Zhu (2006) discovers a long-run (cointegrating) relationship between credit risk
in the corporate bond market and the CDS market, although a substantial deviation
from the theoretical parity relationship can arise in the short-run. The VECM
analysis suggests that the deviation is largely due to the higher responsiveness of
CDS premia to changes in the credit conditions. Norden and Weber (2009) examine
the relationships between CDS, bond and stock markets during the 2000–2002
period. They investigate monthly, weekly and daily lead-lag relationships using
VAR/VEC models, and find that stock returns lead the CDS and bond spread
changes. They also find that the CDS spread changes Granger-cause the bond
spread changes for a higher number of firms than the reverse. They contend that the
CDS market is more sensitive to the stock market than the bond market, and that
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this sensitivity increases for the lower credit quality. Finally, they find that the CDS
market contributes more to price discovery than the bond market, with this result
being stronger for the U.S. than for European firms.

On the informational content of VIX, Luo and Zhang (2010) extended this
volatility index to other maturities and constructed daily VIX term structure data,
proposing a simple two-factor stochastic volatility framework for VIX. Their results
indicate that the framework captures both the time series dynamics of VIX and the
rich cross-sectional shape of the term structure. Consistent with previous studies, it
has been found that VIX contains more information than historical volatility.

Becker et al. (2009) examine two issues pertinent to the informational content of
the VIX implied volatility index. One relates to whether it subsumes information on
how historical jump activity contributed to the price volatility, and the other one
relates to whether VIX reflects any incremental information pertaining to future
jump activity relative to model-based forecasts. It is found that VIX both subsumes
information linked to past jump contributions to total volatility and reflects incre-
mental information relevant to future jumps.

In a related study, Figuerola-Ferretti and Paraskevopoulos (2010) consider the
cointegration and the lead in the price discovery process between credit risk, as
represented by CDS spreads, and market risk embedded in the equity VIX. They
find that CDS and VIX are cointergated and that VIX has a clear lead over the CDS
market in the price discovery process, implying that CDS adjusts to market risk
when there is temporary mispricing from the long-run equilibrium. They find that
there are long-term arbitrage relationships between VIX and CDS for most com-
panies, implying that excess returns may be earned using “pairs trading” strategies.4

Fernandes et al. (2009) examine the time series properties of daily equity VIX.
Their results suggest that VIX display long-range dependence. They confirm the
evidence in the literature that there is a strong negative relationship between VIX and
S&P500 index returns, as well as a positive contemporaneous link with the volume
of the S&P500 index. Moreover, they demonstrate that equity VIX tends to decline
as the long-run oil price increases, reflecting the high demand from oil in recent
years, as well as the recent trend of shorting energy prices in the hedge fund industry.

Gogineni (2010) examines the impact of changes in daily oil price on the equity
returns of a wide array of industries. He finds that stock returns both of industries
that depend heavily on oil and those that use little oil are sensitive to changes in oil
price. The latter industries are impacted because their main customers are affected
by oil prices. The results also demonstrate that the sensitivity of industries’ returns
to the oil price changes depends on the cost-side as well as the demand-side
dependence on oil.

In this study, we will examine the counterparty credit risks embedded in the oil-
related sectors, and their relations to market risks including the expected option

4 The pairs trade or pair trading is a market neutral trading strategy which enables traders to profit
from virtually any market conditions: uptrend, downtrend, or sideways movement. One pairs trade
would be to short the outperforming asset and to long the underperforming one, betting that the
“spread” between the two assets would eventually converge.
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volatility in the stock (equity VIX), and oil (oil VIX) markets, when fundamental
variables such as the S&P 500 index, WTI oil futures price and the 10-year
Treasury bond rate are accounted for. This analysis will provide room to examine
the migration of risks in the different sectors and markets. The near bankruptcy of
GM attests to the importance of such a risk-related examination.

We will also study the dynamic dependent-forcing relationships between these
markets in the recovery period that followed the 2008/2009 financial crisis. Thus,
our approach contrasts with the previous literature, which focused on the firm level,
by examining forcing-dependent variable relationships at the sector level. We will
use the ARDL approach which has flexibility to the degree of integration of these
highly mixed and diversified variables.

4 The ARDL Procedure and Results

Technically, the ARDL approach is a multiple step procedure (Pesaran and Pesaran
2009). In the first step, the bounds testing procedure is utilized to test the presence
of cointegration among the variables to identify the long-run relationship(s)
between a dependent variable and its forcing variables (independent variables). In
the second step, the ARDL models are constructed based on the results obtained in
the first step. The short-run dynamics are estimated in the third step. To use the
bounds test procedure, we estimate the following regressions for the first model
(Model 1) which consists of the four oil-related sectors CDS spreads, the S&P 500
index, the oil futures price, and the 10-year Treasury bond rate, as well as two
dummies QE1 and QE2 representing quantitative easing over the full period.
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ð5Þ

D ln LWTI3Mt ¼ a0W þ
Xn

i¼1

biWD ln LAUTCDt�i þ
Xn

i¼1

ciWD ln LCHECDt�i þ
Xn

i¼1

diWD ln LOILCDt�i

þ
Xn

i¼1

eiWD ln LUTICDt�i þ
Xn

i¼1

fiWD ln LDGS10t�i þ
Xn

i¼1

giWD ln LWTI3Mt�i

þ
Xn

i¼1

hiWD ln SPINDEXt�i þ k1W ln LAUTCDt�1 þ k2W ln LCHECDt�1

þ k3W ln LOILCDt�1 þ k4W ln LUTICDt�1 þ k5W ln LDGS10t�1

þ k6W ln LWTI3Mt�1 þ k7W ln SPINDEXt�1 þ c1WQE1t þ c2WQE2t þ etW

ð6Þ

D ln SPINDEXt ¼ a0S þ
Xn

i¼1

biSD ln LAUTCDt�i þ
Xn

i¼1

ciSD ln LCHECDt�i þ
Xn

i¼1

diSD ln LOILCDt�i

þ
Xn

i¼1

eiSD ln LUTICDt�i þ
Xn

i¼1

fiSD ln LDGS10t�i þ
Xn

i¼1

giSD ln LWTI3Mt�i

þ
Xn

i¼1

hiSD ln SPINDEXt�i þ k1S ln LAUTCDt�1 þ k2S ln LCHECDt�1

þ k3S ln LOILCDt�1 þ k4S ln LUTICDt�1 þ k5S ln LDGS10t�1

þ k6S ln LWTI3Mt�1 þ k7S ln SPINDEXt�1 þ c1SQE1t þ c2SQE2t þ etS:

ð7Þ
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The coefficients b, c, d, e, f, g and h are the short-run coefficients for the respective
variables, while the λs are the long-run coefficients of the ARDL model. The null
hypothesis of no cointegration is that λ1j = λ2j = λ3j = λ4j = λ5j = λ6j = λ7j = 0, where
j represents one of the seven variables. We will construct the second model (Model 2)
by replacing LDGS10 and SPINDEX by LSPVIX and LDFR over the full sample
and replacing LSPVIX with the oil VIX over the subsample.

To determine the appropriate lag length for the bounds testing procedure, we
utilize various criteria with two dummy variables. The Final Prediction Error (FPE),
Akaike Information Criterion (AIC), Schwarz Information Criterion (SIC), Hannan-
Quinn Information Criterion (H-Q), and the Sequential Modified LR Test Statistic
are the common criteria used to determine the lag lengths. These criteria yielded
mixed results. We used the mostly suggested lags for the models. In the case of
conflict, we utilized the lag length suggested by AIC due to the preservation of the
degrees of freedom.

The results of the bounds testing procedure are estimated for the two models in
the full period January 2, 2004 to July 13, 2011 and the 2009 recovery subperiod
June 1, 2009 to July 13, 2011. Model 1, which is comprised of seven variables
including the four oil-related credit risks and three fundamental variables, focuses
on the dependent-forcing variable relationships for the oil-related CDS sector
indices and the fundamentals: the 10-year Treasury bond rate, the oil futures price
and the S&P 500 index. As indicated above, Model 2 concentrates on the oil credit
risks’ relationships with the measures of market risks including the equity VIX, and
the oil VIX as well as the default risk spread. The second model strives to examine
the migration of risks between the oil credit risks and the market risks.

4.1 Model 1

4.1.1 Cointegration in Model 1

In Model 1 for the full period, there are five significant cointegration hypotheses for
the dependent variables, suggesting the presence of five long-run relationships that
bind the seven variables included in this model. The two important dependent
variables that do not have a significant cointegration hypothesis are the CDS index
for the oil and natural gas production sector, and the CDS index for the utility sector
(see Table 3).

For the equation with the auto sector CDS index as the dependent variable, the
cointegration hypothesis in this model is

F(LAUTCDt | LCHECDt, LOILCDt, LUTICDt, LDGS10t, LWTI3Mt, LSPINDEXt)
which yields significant F-statistics for all variables in the model, whether they are
oil- related CDS indices, or the fundamental variables such as the 10-year Treasury
bond rate, the oil price and the stock market. Based on Eq. (1), the most specific
hypothesis is λ1A = λ2A = λ3A = λ4A = λ5A = λ6A = λ7A = 0. Thus, the variable on the left-
had side of “|” indicates the dependent variable, while those on the right-hand side
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are the potential forcing variables. This result indicates a long-run equilibrium
relationship between the credit risk in the utility sector and the three other oil-related
credit risks, the 10-year Treasury rate and the S&P500 index. All right-hand side
variables are the forcing variables of the left-hand side auto sector CDS index. This
finding demonstrates the degree of sensitivity of the auto credit risk to oil-related
credit risks and oil/financial variables. The auto sector has forward and backward
linkages with the rest of the economy and is highly sensitive to the business cycle.

The cointegration hypothesis for the equation with the chemical CDS as the
dependent variable is

F(LCHECDt |LAUTCDt, LOILCDt, LUTICDt, LDGS10t, LWTI3Mt, LSPINDEXt).
This hypothesis also attests that all other oil-related CDS indices and the fun-

damental variables are also forcing variables, as is the case with the auto CDS
index. The chemical sector is cyclical and can be negatively related to oil which it
uses as a feedstock.

When the dependent variable is the benchmark 10-year Treasury rate, the
F-statistic for its cointegration hypothesis

F(LDGS10t |LAUTCDt, LCHECDt, LOILCDt, LUTICDt, LWTI3Mt, LSPINDEXt)
is also significant, underscoring the importance of the CDS, oil and stock market

variables to this benchmark of the bond market. The same significant result holds
for the oil and S&P 500 index equations.

However, no significant findings are reported for the equations of the CDS index
for oil and gas and for utility. Parity between natural gas and oil prices has been
weakening, particularly after the development of the technique that cracks gas
shale, leading to the multiplication of natural gas reserves. The utility sector
includes natural monopolies regulated by local authorities, which may have
something to do with failing to have the other variables as its forcing variables.

Table 3 Model 1’s Bounds-Testing procedure results (full period)

Cointegration hypotheses F-statistics

F(LAUTCDt | LCHECDt, LOILCDt, LUTICDt, LDGS10t, LWTI3Mt,
LSPINDEXt)

4.1860*

F(LCHECDt |LAUTCDt, LOILCDt, LUTICDt, LDGS10t, LWTI3Mt, LSPINDEXt) 2.9141**

F(LOILCDt |LAUTCDt, LCHECDt, LUTICDt, LDGS10t, LWTI3Mt, LSPINDEXt) 1.6291

F(LUTICDt |LAUTCDt, LCHECDt, LOILCDt, LDGS10t, LWTI3Mt, LSPINDEXt) 1.6461

F(LDGS10t |LAUTCDt, LCHECDt, LOILCDt, LUTICDt, LWTI3Mt, LSPINDEXt) 4.4824*

F(LWTI3Mt |LAUTCDt, LCHECDt, LOILCDt, LUTICDt, LDGS10t, LSPINDEXt) 2.6193**

F(LSPINDEXt |LAUTCDt, LCHECDt, LOILCDt, LUTICDt, LDGS10t, LWTI3Mt) 2.2558***

Notes *, ** and *** represent significance at the 1, 5 and 10 % significance levels, respectively.
This table indicates that there are five significant cointegration hypotheses according to the ARDL
approach. In comparison, the Johansen procedure gives six cointegrating equations. The null
hypothesis of no cointegration is that λ1j = λ2j = λ3j = λ4j = λ5j = λ6j = λ7j = 0, where j represents one
of the seven variables as in Eqs. (1–7). The variable on the left-hand side of “|” indicates the
dependent variable, while those on the right-hand side are the potential forcing variables

126 S. Hammoudeh and R. Sari



4.1.2 Estimation of Long-Run and Short-Run Relationships in Model 1

The next step in the ARDL procedure is to estimate the coefficients of the long-run
relationships using the following ARDL(x,y,z,l,m,n,s) models. The models are
determined by the bounds testing procedure. The long-run relationships are given
by:

ln LAUTCDt ¼ a1 þ
Xx

i¼1

ai1 ln LAUTCDt�i þ
Xy

i¼0

bi1 ln LCHECDt�i þ
Xz

i¼0

ci1 lnLOILCDt�i

þ
Xl

i¼0

di1 ln LUTICDt�i þ
Xm

i¼0

/i1 ln LDGS10t�i þ
Xn

i¼0

#i1 ln LWTI3Mt�i

þ
Xs

i¼0

ui1 ln LSPINDEXt�i þ fi1QE1þ gi1QE2þ e1t

ð8Þ

ln LCHECDt ¼ a2 þ
Xx

i¼0

ai2 ln LAUTCDt�i þ
Xy

i¼1

bi2 lnLCHECDt�i þ
Xz

i¼0

ci2 ln LOILCDt�i

þ
Xl

i¼0

di2 ln LUTICDt�i þ
Xm

i¼0

/i2 ln LDGS10t�i þ
Xn

i¼0

#i2 lnLWTI3Mt�i

þ
Xs

i¼0

ui2 ln LSPINDEXt�i þ fi2QE1þ gi2QE2þ e2t

ð9Þ

ln LDGS10t ¼ a3 þ
Xx

i¼0

ai3 lnLAUTCDt�i þ
Xy

i¼0

bi3 ln LCHECDt�i þ
Xz

i¼0

ci3 ln LOILCDt�i

þ
Xl

i¼0

di3 ln LUTICDt�i þ
Xm

i¼1

/i3 ln LDGS10t�i þ
Xn

i¼0

#i3 ln LWTI3Mt�i

þ
Xs

i¼0

ui3 ln LSPINDEXt�i þ fi3QE1þ gi3QE2þ e3t

ð10Þ

ln LWTI3Mt ¼ a4 þ
Xx

i¼0

ai4 ln LAUTCDt�i þ
Xy

i¼0

bi4 ln LCHECDt�i þ
Xz

i¼0

ci4 ln LOILCDt�i

þ
Xl

i¼0

di4 ln LUTICDt�i þ
Xm

i¼0

/i4 ln LDGS10t�i þ
Xn

i¼1

#i4 ln LWTI3Mt�i

þ
Xs

i¼0

ui4 ln LSPINDEXt�i þ fi4QE1þ gi4QE2þ e4t

ð11Þ

lnLSPINDEXt ¼ a5 þ
Xx

i¼0

ai5 lnLAUTCDt�i þ
Xy

i¼0

bi5 lnLCHECDt�i þ
Xz

i¼0

ci5 ln LOILCDt�i

þ
Xl

i¼0

di5 ln LUTICDt�i þ
Xm

i¼0

/i5 ln LDGS10t�i þ
Xn

i¼0

#i5 lnLWTI3Mt�i

þ
Xs

i¼1

ui5 lnLSPINDEXt�i þ fi5QE1þ gi5QE2þ e5t

ð12Þ

Forcing Variables in the Dynamics of Risk Spillovers in Oil-Related… 127



where QE1 and QE2 stand for quantitative easing for the two six months: one in the
second half of 2009, and the other for the first half of 2010, respectively. For the
ARDL models, we use a maximum lag order of 4, which can be considered as
sufficiently high, given the fact that we use daily data.

The long-run results for the auto sector CDS spread show a significant rela-
tionship with only the CDS risk for the chemical sector. An increase in the chemical
market risk leads to a spike in the risk in the auto sectors (Table 4). This sector is
highly dependent on oil as a feedstock and is cyclical. Therefore, the auto and the
chemical sectors have a common factor, namely the business cycle. However, the
CDS spreads of the oil and natural gas production and utility sectors have no
significant influence on the auto CDS spread in the long-run. In terms of the
fundamentals factors strength in both the oil and stock market gives rise to less
credit risk in this sector. When commodity and stock markets are improving, there
is less need for traders and investors to buy protection against credit risk.

The short-run error-correction representation for the auto CDS spread shows
more significant relationships than in the long-run. There are significant relation-
ships with CDS spreads of the chemical, oil and natural gas production and utility
sectors. Thus, in this representation there is a migration of credit risk from other oil-
related sectors to the auto sector. There are also significant relationships with the
three fundamental variables—the oil futures price, the S&P 500 index and the
10-year Treasury bond rate. These relationships are negative, suggesting that when
the business cycles strengthen, the CDS spread drop in the auto sector. In this
framework, neither QE1 nor QE2 has an impact on increasing the auto CDS spread
in the short-run (Table 5).

Table 4 Estimated long-run coefficients of Model 1 (full period)

Forcing
variable

Dependent variable

LAUTCD
(ARDL(4, 0,
1, 1, 2, 2, 2))

LCHECD
(ARDL(3, 0,
1, 1, 2, 2, 4))

LDGS10
(ARDL(3, 3,
2, 1, 1, 0, 4))

LWTI3M
(ARDL(4, 2,
3, 0, 0, 2, 3))

LSPINDEX
(ARDL(4, 4,
3, 2, 1, 4, 1))

LAUTCD 0.3337* −0.0180 0.2778* −0.0775***

LCHECD 1.3783* 0.2169 −0.2906*** 0.0787

LOILCD −1.0332 1.1954*** −2.1175* −0.1283 0.1464

LUTICD −0.4042 −0.1629 0.8770 0.4954*** −0.3878**

LDGS10 −0.1845 0.0535 −0.1524 0.0077

LWTI3M 1.2490* −0.3882 −0.2967 0.1677**

LSPINDEX −3.4845* 1.1136 0.8585 2.7122*

C 26.6461* −8.5243 3.4647 −16.5553* 7.6477*

QE1 −0.0857 −0.3178*** 0.1613 0.1385 0.1018

QE2 −0.1986 −0.1405 −0.4989 −0.0721 0.2136**

All the ARDL(.) models are based on AIC. The asterisks *, ** and *** represent significance at
the 1 %, 5 % and 10 % levels, respectively
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The behavior of the chemical sector’s CDS spread is somewhat different from that
of the auto sector in the short- and long-run. The results show that the CDS credit
risk migrates from both the auto and oil and natural gas production sectors to
the chemical sector in the long-run. As in the auto CDS framework, there is no
significant directional relationship between the chemical CDS spread and the

Table 5 Error-correction representations Model 1 (full period)

Regressor Dependent variables

ΔLAUTCD ΔLCHECD ΔLDGS10 ΔLWTI3M ΔLSPINDEX

ΔLAUTCD 0.0080** −0.1136* 0.0044* −0.0316*

ΔLAUTCD1 0.1413* 0.0433***

ΔLAUTCD2 −0.0960*

ΔLAUTCD3 0.0784*

ΔLCHECD 0.0214* −0.0352 0.0297* −0.0016

ΔLCHECD1 0.0262 0.0250 0.0214** −0.0123**

ΔLCHECD2 −0.1074* 0.0504** 0.0320*

ΔLOILCD 0.2786* 0.2245* −0.1938* −0.0020 −0.0571*

ΔLOILCD1 0.0284**

ΔLOILCD2 0.0130

ΔLOILCD3 0.0216***

ΔLUTICD 0.4036* 0.4413* −0.1928** 0.0828* −0.0973*

ΔLUTICD1 −0.1297*

ΔLDGS10 −0.0862* −0.0310 0.0050 0.0529*

ΔLDGS101 0.0707* −0.0389*** 0.0001 0.0479* 0.0012

ΔLDGS102 −0.0857* 0.0145*

ΔLWTI3M 0.0114 0.1331* −0.0056 −0.0060

ΔLWTI3M1 −0.0956** 0.1339* −0.0326 −0.0176

ΔLWTI3M2 0.0097 0.0068

ΔLWTI3M3 0.0608* 0.0240**

ΔLSPINDEX −0.5843* −0.0326 1.2654* −0.0239

ΔLSPINDEX1 −0.4985* −0.2070** −0.3295* 0.4258* −0.2076*

ΔLSPINDEX2 −0.1903** −0.0830 0.2057* −0.1184*

ΔLSPINDEX3 −0.2124** −0.2660* 0.0478**

QE1 −0.0013 −0.0076*** 0.0030 0.0022 0.0016

QE2 −0.0031 −0.0034 −0.0094 −0.0011 0.0033**

ecm(−1) −0.0156 −0.0239* −0.0188* −0.0159* −0.0155*

Notes For the ARDL models see Table 4. The asterisks *, ** and *** represent significance at the
1%, 5% and 10% levels, respectively. Δ stands for the first difference
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risk-free 10 year Treasury bond market in the chemical CDS framework. Interest-
ingly, the chemical CDS spread is positively sensitive to QE1, which is not the case
for the auto CDS spread.

In the short-run, all sector CDS spreads and fundamental variables have an
influence over the chemical CDS spread. The financial fundamental factors
(excluding the oil price) have an inverse directional relationship with the chemical
CS spread. On the other hand, surges in the oil price lead to significant increases in
the chemical CDS spread, and this is clearer than in the case of the auto CDS
spread. Rises in the CDS spreads of all sectors also increase the CDS spread in the
chemical sector.

In the long-run, the relationships between the oil price and the credit risks and
the fundamental variables are less potent than in the short-run. In the long-run, the
CDS spreads for the chemical, auto and utility sectors have differential impacts on
the oil futures prices, with the auto and utility sector having a positive impact while
the chemical having a negative relationship. This is somewhat surprising because
auto and chemical sectors are cyclical while the utility sector is defensive. The
fundamental variables also have varying impacts, with the S&P 500 index sharing a
common business cycle with the “financialized” oil while the 10-year bond rate
moves counter cyclically with the oil price.

For oil in the short-run over the full sample, rises in the CDS risk spread for the
chemical and auto sectors cause the oil futures price to increase. The auto and
chemical sectors use oil as a feedstock and are also highly cyclical, which may
imply that during the expanding phase of the business cycle these sectors experi-
ence an increase in their risk protection in the form of higher option prices. The oil
price includes a fear premium component, which possibly picks up spikes in fears
in those cyclical oil-related sectors. On the other hand, increases in the CDS risks
for the utility sector have mixed effects on oil futures, increasing the oil futures in
the current period and reducing it in the previous period. As indicated previously,
this differential cycling impact is probably linked to the nature of the utility sector,
which is regulated by state governments and is considered a defensive sector at
times of recessions.

When it comes to the financial fundamentals and the oil price in the long-run,
there is a common factor that commoves the oil futures price with those variables,
namely the strength of the business cycle and the overall economy. The result is
also consistent with the notion of the “financialization” of oil. This finding should
explain the positive relationship between the S&P500 index and the 10-year bond
rate and the oil price.

As expected, the S&P 500 index as a dependent variable has fewer directional
relationships with the oil-related CDS spreads and the fundamental variables in the
long-run over the full sample. Increases in the auto and utility CDS spreads move
this major stock index negatively, with the CDS spread of the other two sectors
having no effects. This is due to the non-oil- related sectors that are included in the
index. Among the fundamental variables, only the oil price positively co-moves
the stock index. Interestingly, QE2 but not QE1 adds to the spike in the level of the
S&P 500 index in this sector CDS framework.

130 S. Hammoudeh and R. Sari



In the short run, similarly to the oil price, the S&P 500 index has many direc-
tional relationships with the oil-related sector CDSs and the fundamental variables.
In terms of the relationships with the sector CDS indices, increases in the credit risk
spread of the chemical, auto and utility sectors reduce the S&P 500 index as more
traders and investors purchase options to hedge against the rising credit risk in these
oil-sensitive sectors. On the other hand, rising risk in the oil and natural gas pro-
duction sector leads to a higher S&P 500 index. As for the short-run links with the
fundamentals, this stock index responds positively to both the oil price and the
10-year Treasury bond rate. Thus, the relationship between the S&P 500 index and
the oil price is positive and bidirectional. As in the long run, QE2 and not QE1 adds
to increases in the stock index. Among the other fundamentals, only the S&P 500
index is significant in influencing the long-run interest rate benchmark and the
relationship is negative, suggesting that a rising stock market index in this frame-
work imply a lower 10-year bond rate.

The risk-free 10-year Treasury bond rate has a greater directional relationship
with the sector CDS spreads and the other fundamental factors than the oil price and
the S&P 500 index. In the long-run, this benchmark has a positive directional
relationship with only the CDS risk in the oil and natural production sector. The
unilateral causal relationship may reflect changes in the credit risk in the oil sector
on inflationary expectations which also capture another measure of risk.

In the short run, the risk-free interest rate has fewer relations than the oil price
and the stock index. Spikes in the chemical and delayed auto CDS spreads lead to a
higher Treasury bond rate. On the other hand, increases in risk spreads in the utility
and oil production and gas sector dampen the risk-free interest rate benchmark.

4.1.3 The Recovery Subperiod for Model 1

Model 1 is also estimated for the recovery subperiod which spans the period June 1,
2009 to July 13, 2011. There are five cointegration hypotheses for the dependent
variables that are significant in Model 1 as in the previous model but the dependent
variables that are significant have changed somewhat (see Table 6). In this model,
the hypothesis for the utility CDS index becomes significant, while that for the S&P
500 index loses its significance. However, the CDS for oil and natural gas pro-
duction remains exogenous in both periods for Model 1.

In the long-run relationship for the auto CDS spread, the significance of the
variables has changed somewhat in the subperiod. The chemical CDS spread
remains a significant forcing variable for the auto CDS spread (Table 7). But unlike
the case of the full period, in the subperiod the CDS spread for the oil and natural
gas production has become significant as a forcing variable for the auto CDS
spread, while the oil price becomes insignificant. This is probably a sign of an
increase in the long-run credit risk. The stock market also remains a significant
forcing variable. In the short-run error correction representation, the dependent-
forcing variable relations for the auto CDS spread basically remain the same. A
notable difference is the change in the role of the oil and natural gas production
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CDS from a credit risk-elevation forcing variable in the full period to a dampening
forcing variable in the subperiod. The oil price has also become a risk dampening
risk forcing variable under the subperiod probably because of its steep decline as a
result of the Great Recession.

The long-run relationship for the chemical CDS spread has weakened in the
subperiod. Only the S&P 500 index is the significant forcing variable and has a
cooling effect on the chemical CDS in this subperiod. Whereas the current effect
elevates the credit risk, the delayed effect is risk-cooling (Table 8). Among the
fundamentals, only the S&P 500 index maintains a consistent risk-dampening effect
on the chemical CDS.

There is no long-run equation for the utility CDS spread in the full period. In the
subperiod, the CDS spreads of both oil and natural gas production are risk-elevating
forcing variables for the utility CDS spread. The only fundamental variables forcing

Table 6 Bounds-testing procedure results for Model 1 (subperiod)

Cointegration hypotheses F-statistics

F(LAUTCDt | LCHECDt, LOILCDt, LUTICDt, LDGS10t, LWTI3Mt,
LSPINDEXt)

2.3685***

F(LCHECDt |LAUTCDt, LOILCDt, LUTICDt, LDGS10t, LWTI3Mt, LSPINDEXt) 2.1802***

F(LOILCDt |LAUTCDt, LCHECDt, LUTICDt, LDGS10t, LWTI3Mt, LSPINDEXt) 1.2801

F(LUTICDt |LAUTCDt, LCHECDt, LOILCDt, LDGS10t, LWTI3Mt, LSPINDEXt) 3.7145*

F(LDGS10t |LAUTCDt, LCHECDt, LOILCDt, LUTICDt, LWTI3Mt, LSPINDEXt) 2.7710**

F(LWTI3Mt |LAUTCDt, LCHECDt, LOILCDt, LUTICDt, LDGS10t, LSPINDEXt) 2.7916**

F(LSPINDEXt |LAUTCDt, LCHECDt, LOILCDt, LUTICDt, LDGS10t, LWTI3Mt) 1.9665

Notes *, ** and *** represent significance at the 1 %, 5 % and 10 % levels, respectively

Table 7 Estimated long-run coefficients of Model 1 (subperiod)

Forcing
variable

Dependent variable

LAUTCD
(ARDL(2, 4,
0, 2, 1, 1, 3))

LCHECD
(ARDL(4, 4,
3, 4, 2, 4, 2))

LUTICD
(ARDL(4, 1,
2, 2, 0, 4, 2))

LDGS10
(ARDL(2, 0,
0, 1, 2, 0, 1))

LWTI3M
(ARDL(2, 0,
0, 0, 3, 1, 2))

LAUTCD 0.0308 −0.1160 −0.2773 0.1890**

LCHECD 1.1891* 0.6907* −2.1811 −0.2172

LOILCD −0.6224** −0.1608 0.2307*** −5.9542*** −0.1019

LUTICD 0.4155 0.5469 5.1377 0.2350

LDGS10 0.1170 0.0111 −0.0788*** 0.0007

LWTI3M 0.5298 0.6353 −0.0941 −1.9527

LSPINDEX −3.3799* −2.0130*** 0.5254 −7.6963 1.6456*

C 22.3582* 13.7948* −1.3465 80.4024 −8.0683*

All the ARDL(.) models are based on AIC. The asterisks *, ** and *** represent significance at
the 1 %, 5 % and 10 % levels, respectively
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the utility CDS spread is the 10-year Treasury bond rate, causing dampening of this
spread. In the short-run error correcting representation, the utility CDS spread has
multiple relationships in the subperiod. All the CDS spreads for all the sectors as
well as the three fundamentals influence the utility CDS spread.

Finally, in this subperiod all three financial and oil fundamentals have fewer
long- and short-run representations whether in terms of the other sectors’ CDS
spreads or the other fundamentals. This could be due to the persistently high
uncertainty in the markets.

Table 8 Error-correction representations of Model 1 (subperiod)

Regressor Dependent variables

ΔLAUTCD ΔLCHECD ΔLUTICD ΔLDGS10 ΔLWTI3M

ΔLAUTCD 0.0392* 0.0421* −0.2095* −0.0268***

ΔLAUTCD1 0.3936* 0.0098 −0.0244*** 0.1065**

ΔLAUTCD2 −0.0260***

ΔLAUTCD3 0.0335**

ΔLCHECD 0.4222* 0.4227* −0.3542* 0.1018**

ΔCHECD1 −0.0793 0.0795*** −0.0561 −0.1428*

ΔLCHECD2 0.3333* 0.0511 0.1106*

ΔLCHECD3 −0.1546*** −0.0746***

ΔLOILCD −0.0458** 0.1223* 0.1112* −0.0856* −0.0072

ΔLOILCD1 −0.0105

ΔLOILCD2 0.0813*

ΔLUTICD 0.5074* 0.4758* 0.0738*** 0.0166

ΔLUTICD1 −0.2448*** −0.0396 0.1674*

ΔLUTICD2 −0.0383 0.0209

ΔLUTICD3 −0.0833*** 0.0932*

ΔLDGS10 −0.1053* −0.0233** −0.0035*** 0.0000

ΔLDGS101 −0.0164 −0.0893**

ΔLWTI3M −0.1746*** 0.0611*** 0.0254 −0.0281 0.0687***

ΔLWTI3M1 0.0235 −0.0150

ΔLWTI3M2 −0.0787** 0.0509***

ΔLWTI3M3 −0.0814* 0.0789*

ΔLSPINDEX −0.4423** −0.3233* −0.2543* 2.1695* 0.1893**

ΔLSPINDEX1 0.4764** −0.1987** −0.1136*** 0.7348*

ΔLSPINDEX2 0.4157**

ecm(−1) −0.0736* −0.0288* −0.0439* −0.0144*** −0.0708*

Notes For the ARDL models see Table 7. The asterisks *, ** and *** represent significance at the
1%, 5% and 10% levels, respectively. Δ stands for the first difference
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4.2 Model 2

While this model has seven variables as in Model 1, the two financial fundamental
variables in the previous model, specifically the S&P 500 index and the 10-year
Treasury bond rate, are replaced with two measures of market and credit risks,
namely the S&P VIX index and the default risk spread. Thus, the aim of this model
is to examine the spillovers among the CDS credit risks for the four oil-related
sectors and with the market risks of the stock and bond markets. The default risk
spread is a much better measure of credit risk than the Merrill Lynch option
volatility estimate (MOVE), which interrelates little with market and credit risks
other than the S&P VIX. As in the previous model, we will examine the results for
the full period and the subperiod in Model 2.

4.2.1 Cointegration in Model 2

This model has four cointegration relationships, compared to five in the previous
model (Table 9). This suggests that replacing the financial variables with two
market risk variables in Model 2 reduces the long-run relationships with the CDS
credit risks of the four oil-related sectors. The significant cointegration hypotheses
are found for the CDS indices of the auto and chemical sectors, the S&P VIX and
the default risk variables. In the model, the CDSs of the utility sector and the oil and
natural gas production are not significant like in the previous model. For the
equation with the auto sector CDS index as the dependent variable, the cointe-
gration hypothesis in this model is:

F(LAUTCDt | LCHECDt, LOILCDt, LUTICDt, LSPVIXt, LWTI3Mt, LDFRt).
The other three cointegration hypotheses for the dependent variables LCHECDt,

LSPVIXt and LDFRt in the model are similar to the above cointegration hypothesis
but alternate their dependent variables. The S&P VIX detects fears in all markets,
while the default risk spread presages changes in economic activity where it spikes
if it predicts a recession and dips if it forecasts a boom.

Table 9 Bounds-Testing procedure results for Model 2 (full period)

Cointegration hypotheses F-statistics

F(LAUTCDt | LCHECDt, LOILCDt, LUTICDt, LSPVIXt, LWTI3Mt, LDFRt) 4.0210**

F(LCHECDt |LAUTCDt, LOILCDt, LUTICDt, LSPVIXt, LWTI3Mt, LDFRt) 3.6697**

F(LOILCDt |LAUTCDt, LCHECDt, LUTICDt, LSPVIXt, LWTI3Mt, LDFRt) 2.8175

F(LUTICDt |LAUTCDt, LCHECDt, LOILCDt, LSPVIXt, LWTI3Mt, LDFRt) 1.8562

F(LSPVIXt |LAUTCDt, LCHECDt, LOILCDt, LUTICDt, LWTI3Mt, LDFRt) 3.2510***

F(LWTI3Mt |LAUTCDt, LCHECDt, LOILCDt, LUTICDt, LSPVIXt, LDFRt) 1.2529

F(LDFRt |LAUTCDt, LCHECDt, LOILCDt, LUTICDt, LSPVIXt, LWTI3Mt) 3.6072***

Notes *, ** and *** represent significance at the 1 %, 5 % and 10 % levels, respectively. This table
indicates that there are five significant cointegration hypotheses according to the ARDL approach
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4.2.2 Estimation of Long-Run and Short-Run Relationships in Model 2

The next step in the ARDL procedure is to estimate the coefficients of the long-run
relationship using the ARDL(x,y,z,l,m,n,s) specifications for Model 2. This model is
determined by the bounds testing procedure. The long-run results for the dependent
variable, the auto CDS, indicate significant relationships with both the CDS risks
for the chemical and oil and natural sectors as well as with the oil price and the
default risk spread (Table 10). Surprisingly, the auto CDS has no long-run direc-
tional relationship with the S&P VIX.

The short-run error-correction representation for the auto CDS spread in Model 2
shows fewer significant relationships than Model 1. There are significant rela-
tionships with the other three CDS spreads, the S&P VIX and the default risk
spread in the short-run (Table 11). Thus, there is a migration of market risk to the
auto credit risk in this equation. In this framework, as in Model 1, neither QE1 nor
QE2 has an impact on increasing the auto CDS spread in the short-run.

The chemical CDS credit risk has no long-run relations with the other sectors’
CDSs, VIX or default risk in this model. This is surprising given the similarity
between the oil and chemical sectors. But in the short-run, the chemical CDS has a
dependence relationship with the oil and natural gas production, utility CDSs and
the oil price but not with the S&P VIX or the default risk spread in Model 2. There
is no migration from the market risks to the credit risk in the chemical sector.

The estimate of the long-run relationship for the S&P VIX index has four long-
run forcing variables, including specifically the CDS of the oil and natural gas
production and the default risk spread as well as QE2. Thus, in this framework there

Table 10 Estimated long-run coefficients of Model 2 (full period)

Forcing
variable

Dependent variable

LAUTCD (ARDL
(4, 0, 1, 1, 2, 0, 0))

LCHECD (ARDL
(3, 0, 3, 1, 0, 2, 0))

LSPVIX (ARDL
(3, 0, 2, 4, 2, 0,
4))

LDFR (ARDL
(4, 2, 0, 0, 1, 4,
4))

LAUTCD 0.1067 −0.0383 0.0916

LCHECD 0.6252*** 0.1172 0.5253*

LOILCD −1.4855** 0.6509 0.3067*** 0.3760

LUTICD 0.3109 −0.3242 −0.0149 0.0114

LSPVIX 0.1781 0.3578 1.2847*

LWTI3M 0.4294*** −0.0731 0.2375* 0.1942

LDFR 0.7622* 0.2329 0.1556**

C 4.3131** 1.3131 −0.1186 −6.7468*

QE1 0.1550 −0.2231 −0.0364 −0.6641*

QE2 −0.3636 −0.0940 −0.2443** −0.0863

All ARDL(.) models are based on AIC. The asterisks *, ** and *** represent significance at the 1
%, 5 % and 10 % levels, respectively
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Table 11 Error-correction representations of Model 2 (full period)

Regressor Dependent variables

ΔLAUTCD ΔLCHECD ΔLSPVIX ΔLDFR

ΔLAUTCD 0.0030 0.1156* 0.0015

ΔLAUTCD1 0.1390* −0.0465***

ΔLAUTCD2 −0.1020*

ΔLAUTCD3 0.0897*

ΔLCHECD 0.0105*** 0.0082 0.0084**

ΔLCHECD1 0.0319

ΔLCHECD2 −0.1107*

ΔLOILCD 0.3293* 0.2616* 0.3848* 0.1210*

ΔLOILCD1 0.0310 −0.1179***

ΔLOILCD2 0.1017** −0.1183**

ΔLOILCD3 −0.1056***

ΔLUTICD 0.4777* 0.4542* 0.4887* 0.1864*

ΔLUTICD1 0.1203 0.0772**

ΔLUTICD2 0.0408

ΔLUTICD3 −0.0778**

ΔLSPVIX 0.0935* 0.0100 0.0767*

ΔLSPVIX1 0.0299 −0.1589* −0.0299**

ΔLSPVIX2 −0.0980*

ΔLWTI3M 0.0072 0.1037** 0.0166* −0.0208

ΔLWTI3M1 0.1310* −0.0296

ΔLWTI3M2 −0.0490***

ΔLWTI3M3 −0.0558**

ΔLDFR 0.0127* 0.0065 0.2855*

ΔLDFR1 −0.1390* 0.0662*

ΔLDFR2 0.0585 0.0800*

ΔLDFR3 0.0636 0.1109*

QE1 0.0026 −0.0062 −0.0025 −0.0106*

QE2 −0.0061 −0.0026 −0.0171** −0.0014

ecm(−1) −0.0167* −0.0280* −0.0699* −0.0160*

Notes For the ARDL models see Table 10. The asterisks *, ** and *** represent significance at the
1%, 5% and 10% levels, respectively. Δ stands for the first difference
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is a spillover from the oil and natural gas credit risk to the market risk S&P VIX,
and a market to market risk migration between the VIX and the default risk spread.
In the short-run, the S&P VIX has more significant relationships with the credit and
market risks than in the long-run, including relationships with the utility and oil and
natural gas CDSs, the default risk spread and QE2.

Finally, the long-run and short-run results for the dependent variable default risk
spread indicate that there is a directional relationship between this market risk and
its forcing variables the S&P VIX, and also with the oil and gas production CDS,
and QE1. In the short-run, there is a relationship with the CDSs of the chemical, oil
and gas production sectors, the oil price and QE1.

4.2.3 The Recovery Subperiod for Model 2

The S&P VIX in Model 2 of the full period is replaced in this subperiod with the oil
VIX which has available data from May 17, 2007. The purpose of modeling this
subperiod is to understand the directional relationships between the oil VIX and the
oil-related sector CDSs which should focus on credit and market migration and
cascading with the oil-related sectors. The sample size is dictated by the length of
the oil VIX series which influenced the estimation in this subperiod.

Model 2 has one cointegrating hypothesis for this subperiod, compared to five
for Model 1 over the recovery subperiod (Table 12). In this subperiod, there is no
long-run relationship between these market risks and credit risks in the oil related
sectors (Table 13).

In the short-run, the dependent variable default spread risk, has four forcing
variables: Oil VIX, chemical CDS and auto CDS (Table 14).

Table 12 Bounds-testing procedure results of Model 2 (subperiod)

Cointegration hypotheses F-statistics

F(LAUTCDt | LCHECDt, LOILCDt, LUTICDt, LOILVIXt, LWTI3Mt, LDFRt) 2.4257

F(LCHECDt |LAUTCDt, LOILCDt, LUTICDt, LOILVIXt, LWTI3Mt, LDFRt) 2.1203

F(LOILCDt |LAUTCDt, LCHECDt, LUTICDt, LOILVIXt, LWTI3Mt, LDFRt) 1.2500

F(LUTICDt |LAUTCDt, LCHECDt, LOILCDt, LOILVIXt, LWTI3Mt, LDFRt) 3.0590

F(LOILVIXt |LAUTCDt, LCHECDt, LOILCDt, LUTICDt, LWTI3Mt, LDFRt) 2.7870

F(LWTI3Mt |LAUTCDt, LCHECDt, LOILCDt, LUTICDt, LOILVIXt, LDFRt) 1.6205

F(LDFRt |LAUTCDt, LCHECDt, LOILCDt, LUTICDt, LOILVIXt, LWTI3Mt) 4.2180**

Notes *** represent significance at the 10 % levels, respectively
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5 Conclusions

Given the pivotal role that the oil price plays in the economy and financial markets
and the rising risk and uncertainty, this study analyzes primarily the dependent-
forcing variable relationships for the insurance protections for four oil-related
sectors- auto, chemical, oil and natural gas production, and utility, as well as their

Table 13 Estimated long-run
coefficients of Model 2 with
OILVIX (subperiod)

Forcing variable Dependent variable

LDFR ARDL(3, 1, 4, 3, 0, 0, 0)

LOILVIX 0.2376

LCHECD 1.1920***

LAUTCD −0.3820

LOILCD 0.4479

LUTICD 0.8066

LWTI3M −0.0590

CC −7.8820**

The ARDL(.) is based on AIC. The asterisks ** and *** represent
significance at the 5 % and 10 % levels, respectively

Table 14 Error-correction
representation of Model 2
with OILVIX (subperiod)

Regressor Dependent variable

ΔLDFR

ΔLDFR1 0.1144*

ΔLDFR2 0.0942**

ΔLOILVIX 0.0652**

ΔLCHECD 0.2562*

ΔLCHECD1 0.0744

ΔLCHECD2 0.0280

ΔLCHECD3 0.1478**

ΔLAUTCD −0.0099

ΔLAUTCD1 0.0078

ΔLAUTCD2 −0.0647**

ΔLOILCD 0.0138

ΔLUTICD 0.0248

ΔLWTI3M −0.0018

ecm(−1) −0.0308*

Notes For the ARDL model see Table 13. The asterisks * and **
represent statistical significance at the 1 % and 5 % levels,
respectively. Δ stands for the first difference
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relations with the other risk and fundamental variables. The oil-related sectors are
considered among the largest S&P sectors. The first two sectors are highly cyclical
and follow the business cycle, while the last sector is defensive and could fare better
even during a contractionay phase of the business cycle. Buyers of debt protection
pay a premium or a spread which increases during periods of high risk.

This study examines migration and cascading of credit risks among those sec-
tors, while controlling for the oil and financial fundamentals and market risks. It
also examines the 2009/2010 impact of quantitative easing on market and CDS
credit risks. The analysis is performed within the framework of two models esti-
mated over the full sample period and a subperiod that spans the 2009 recovery
following the 2007/2008 recession. Model 1 examines the relationships for the four
oil-related credit risks, given the presence of three fundamental variables: the WTI
oil futures price, the 10-year Treasury bond rate and the S&P 500 index. Model 2
examines the four oil-related credit risks and controls for two market risks repre-
sented by the S&P VIX and the default risk spread. Moreover, in this model the
S&P VIX of the full sample is replaced with the oil VIX in the 2009 recovery
subperiod due to the availability of data in May 2007.

The main finding of the study indicates that replacing the two financial funda-
mental variables with the two market risks reduces the long- and short-run risk
migration and cascading in the second model relative to the first model in both the
full sample and the subperiod. This finding underscores the importance of including
fundamental variables when are modelling and examining credit risks that also
reflect risk. The oil price has more and varying credit risk spillover effects in the
short-run than in the long-run; it has a dampening effect on the auto CDS spread
and a heightening effect on the chemical CDS spread. A surging10-year Treasury
bond rate has a dampening effect in the short-run, suggesting that the position of
monetary policy matters for oil-related CDS risks. The S&P 500 index moves in the
opposite direction to those CDS risks, benefiting from greater liquidity.

Among the two market risk variables, the default risk spread which foreshadows
changes in economic activity has a stronger lead/lag relationship with the other
types of the credit and market risks than the S&P VIX index which gauges fears in
the overall economy. When the S&P VIX is replaced with the oil VIX in the
subperiod of Model 2, the directional relations weaken significantly, abating the
migration and cascading of different risks among the risk variables.

The long- and short-run relationships among the oil-related credit risks and with
the other variables are more diverse. The cyclical chemical and auto CDS spreads
are the most responsive of these sector CDS and the oil and natural gas production
and utility CDS spreads are least responsive.

The recent quantitative easing QE1 and QE2 has limited impact affecting mainly
the financial variables. In Model 1, the impact is on the chemical CDS and the S&P
500 index, while in Model 2 it affects the S&P VIX and the default risk spread.
Therefore, QE does not seem to contribute considerably to the oil-related credit
risks.
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Oil Futures Market: A Dynamic Model
of Hedging and Speculation

Giulio Cifarelli and Giovanna Paladino

Abstract This paper develops a non linear model for oil futures prices which
accounts for pressures due to hedging and speculative activities. The corresponding
spot market is assumed to maintain a long term equilibrium relationship with the
futures prices in line with the presence of an arbitrage led time varying basis. The
model combines an error correction relationship for the cash returns and a non
linear parameterization of the corresponding futures returns with a bivariate CCC-
TGARCH representation of the conditional variances. The dynamic interaction
between spot and futures returns in the oil market has been investigated over the
1990–2010 time period. We have found clear evidence of the activity of hedgers
and speculators on the futures markets and the role of the latter is far from negli-
gible. Finally, in order to capture the consequences of the growing impact of
financial flows on commodity market pricing, a two-state regime switching model
for futures returns has been implemented. The empirical findings indicate that
hedging and speculative behavior change across the two regimes, which we asso-
ciate with low and high return volatility, according to a distinctive pattern.
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1 Introduction

This research focuses on hedging and speculation with futures contracts. Futures
trading involves an exchange of contracts between people with opposing views of the
market and/or with a different degree of risk aversion. The risk is shifted from a party
that desires less risk to a party that is willing to accept it in exchange for an expected
profit.1

In the real world there is no clear separation between agents since hedgers and
speculators do not play a strictly uniform role. It may well be that typical hedgers,
such as commercial firms, take a certain view on the market and speculate on price
direction; alternatively, speculators can find it profitable to engage in hedging
activities (see Stulz 1996; Irwin et al. 2009). Consequently it is misleading to
consider hedgers as pure risk-averse agents and speculators as risk-seekers. In this
paper the futures’ demand function avoids this simplistic division.

Speculators, mainly non commercial firms or private investors, are essential for
the smooth functioning of commodity markets as they assure liquidity and assume
the risks discarded by hedgers in order to earn profits stemming from the expected
price changes. Speculators intervene directly in the futures market where transac-
tion costs are low and no physical delivery is involved.

The literature on commodity market speculation has followed two main strands.
A direct approach attempting to micro model simultaneously speculative and
hedging behavior, and an indirect approach analyzing the excess co-movement of
commodity prices that ascribes this evidence to ‘herding’ behavior.

As for the direct approach, an important paper by Johnson (1960) suggests that
hedging and speculation in futures markets are interrelated. Speculation is mainly
attributed to traders’ expectations on future price changes that bring about an
increase/decrease of the optimal hedging ratio in a short hedging context. Ward and
Fletcher (1971) generalize Johnson’s approach to both long and short hedging and
find that speculation is associated with optimal futures positions (short or long) that
are in excess of the 100 % hedging level.

As stated above, the indirect approach focuses on the presence of excess co-
movement of returns (with respect to a component explained by fundamentals) of
unrelated commodities (Pyndick and Rotemberg 1990). Subsequent research—see
among others Cashin et al. (1999), Ai et al. (2006), and Lescaroux (2009)—chal-
lenged the excess co-movement hypothesis on empirical and methodological
grounds. The results are mixed and could indeed depend on the selection of the
estimation techniques and/or of the information set (Le Pen and Sévi 2010).

Finally, the disclosure of data on the Commitments of Traders Reports, provided
by the Commodity Futures Trading Commission, has recently produced papers that
try to assess the impact of speculation on commodity prices, measuring speculative
positions in terms of open interest. The weekly open interest of each commodity is

1 Fagan and Gencay (2008) find that hedgers and speculators are often counterparties, since they
tend to take opposing positions. Their respective long positions exhibit a strong negative correlation.
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broken down, according to the purposes of traders. The empirical results, however,
are mixed (Fagan and Gencay 2008).

The analysis of hedging is less variegated. Stein (1961) and McKinnon (1967)
model hedgers’ behavior consistently with the minimization of the variance of the
return of a portfolio constructed with cash and futures contracts. The optimal cover
ratio (the Minimum Variance Hedge ratio or MVH) is defined as the percentage of
cash position or value matched by futures contracts that minimizes the variance of the
hedged portfolio. The MVH strategy pays no attention to the hedged portfolio
expected return. Subsequent improvements include strategies based on hedged
portfolio return mean and variance expected utility maximization (Cecchetti et al.
1988), minimization of the extended mean-Gini coefficient (Kolb and Okunev 1992),
or based on the Generalised Semivariance (Lien and Tse 2000). It has been shown,
however, that if futures prices are martingale processes and if spot and futures returns
are jointly normal then the optimal hedge ratio converges to the MVH ratio.

Given the stochastic nature of futures and spot prices, the hedge ratio is unlikely
to be constant. Static OLS hedge ratio estimation recognizes that the correlation
between the futures and spot prices is less than perfect (Figlewski 1984), but
imposes the restriction of a constant correlation between spot and futures price rates
of change. As such, it could lead to sub-optimal hedging decisions in periods of
high basis volatility. The properties of the joint distribution of the returns have
prompted the implementation of GARCH techniques in studies which find that
optimal hedge ratios are time dependent and that dynamic hedging reduces in-
sample portfolio variance substantially more than static hedging. They are based on
the estimation of bivariate conditional variance models of varying complexity (see,
among others, Kroner and Sultan (1993), Chan and Young (2006), who incorporate
a jump component in a bivariate GARCH, and Lee and Yoder (2007), who
implement a Markov switching GARCH).

This paper investigates some complex dynamic properties of cash and futures
prices—typically disregarded in literature. We develop a plausible model of oil market
hedger and speculator short-run reaction to expected returns and volatility shifts. The
empirical findings corroborate our a priori hypotheses and provide innovative insights
into the impact on futures pricing of the interaction between hedging and speculation
across volatility regimes. In line with Tokic (2011) we find evidence of a change in the
attitude of hedgers in periods of high volatility, when their comprehension of the
market declines. They adopt a destabilizing feedback trading behavior, reducing their
optimal hedge ratio, and becoming more active on the futures market.

This paper contributes to the current debate as follows:

a. Using a complex non linear CCC-TGARCH approach we model explicitly the
reaction of hedgers and speculators to volatility shifts in the oil market. In this
way the literature is extended by adding a dynamic component to the standard
optimal hedge ratio computation.

b. A two-state Markov switching procedure is used to model the impact of changes
in the behavior of the oil market, changes due to bullish/bearish reactions to
futures price changes and/or to shifts in risk aversion brought about by return
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volatility changes. We thus identify a financial pattern that seems to play an
important role in recent oil market pricing.

c. Wemodel and assess empirically the relative impact of speculative versus hedging
drivers on oil futures pricing, and investigate whether periods of high futures
return volatility may be associated with a more intense speculative activity.

Following a discussion of the properties of a dynamic model of hedging and
speculation (Sect. 2), the paper outlines the main features of the non linear multi-
variate CCC-TGARCH used in the empirical investigation (Sect. 3), sets forth the
estimates for the oil market (Sect. 4), and presents a Markov switching framework
in which the drivers of futures returns are assumed to switch between two different
processes that are dictated by the state of the market (Sect. 5). Section 6 provides
the main conclusions.

2 A Dynamic Model of Hedging and Speculation

Hedging transactions are intended to reduce the risk of unwanted future cash price
changes to an acceptable level by offsetting spot market trades with trades of the
opposite sign in the corresponding futures market. Thus, if current cash and futures
prices are positively correlated, the financial loss in one market will be compensated
by the gains obtained from holding the opposite position in the other market.

In more detail, let rc;t ¼ D logCt ¼ Dct and rf ;t ¼ D logFt ¼ Dft, where Ct is the
oil cash (spot) price and Ft is the price of the corresponding futures contract. An
investor who takes a long (short) position of one unit in the cash market will hedge
by taking a short (long) position of b units in the corresponding futures market,
which he will buy (sell) back when he sells (buys) the cash. The hedge ratio b can
be seen as the proportion of the long (short) cash position that is covered by futures
sales (purchases).2

The revenue of this hedging position (or portfolio), i.e. the hedger’s return rH;t, is
given by

rH;t ¼ rc;t � brf ;t ð1Þ

The variance of this portfolio is given by

r2rH ;t ¼ r2rc;t þ b2r2rf ;t � 2brrc;trrf ;tqrcrf ;t ð2Þ

where r2rc;t is the variance of rc;t, r2rf ;t is the variance of rf ;t, and qrcrf ;t is the
correlation between rc;t and rf ;t.

The optimum hedge ratio b� is derived from the first order condition of the
hedging portfolio variance minimization and reads as

2 The hedge ratio is also defined as the ratio between the number of futures and cash contracts.
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b� ¼ rrc;trrf ;tqrcrf ;t
r2rf ;t

ð3Þ

The optimum hedge ratio depends on both the covariance between changes in
futures and cash prices, rrcrf ;t ¼ rrc;trrf ;tqrcrf ;t, and the variance of futures price
changes.

We extend the standard hedging model by introducing a dynamic component.
The expected utility of hedgers is assumed to be an inverse function of the expected
variability of their optimally hedged position. The variance of this position (or
portfolio) can be defined, replacing the optimal hedge ratio b� in Eq. (2) with its
determinants set out in Eq. (3), as

r2rH ;t ¼ r2rc;t �
rrcrf ;t
� �2

r2rf ;t
¼ r2rc;t 1� q2rcrf ;t

� �
ð4Þ

where qrcrf ;t ¼ rrcrf ;t
�
rrf ;trrc;t

An increase in the minimum portfolio variance may be due to a rise in the
variability of cash price changes and/or to a decrease in the correlation between
cash and futures price changes.

The demand of futures contracts of an hedger wishing to minimize the variance
of his optimal portfolio is defined as

DH
t ¼ a0 þ bHr2rc;t 1� q2rcrf ;t

� �
ð5Þ

where a0 is a constant term and bH measures the demand sensitivity to the vari-
ability of the return of the optimally hedged position. We can thus reasonably
assume that bH is positive if consumers’ hedging prevails, since consumers, con-
cerned about cash price increases, will demand more futures contracts whenever the
portfolio variance increases. Conversely, bH will be negative if producers’ hedging
prevails, since producers, worried about possible cash price decreases, will supply
more (i.e. demand fewer) contracts if the variability of their hedged position rises.

The demand for futures contracts of a speculator is defined as

DS
t ¼ c0 þ dSEtrf ;tþ1 � eSr2rf ;t ð6Þ

where c0 is a constant term. dS is assumed to be always positive because of the
positive impact on oil speculation of an increase in expected futures returns,
whereas eS can be either positive or negative, depending on speculator reaction to
risk. We assume that eS\0 for risk lover and eS [ 0 for risk averse agents.

It is generally accepted that futures trading is a zero sum game. Thus we can
assume that the net demands of both agents are balanced on a daily basis or,
equivalently, that the demands of hedgers and speculators add up to 1
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DH
t þ DS

t ¼ 1 ð7Þ

By substituting Eqs. (5) and (6) in Eq. (7) and readjusting terms, we obtain the
following expression for the expected futures return

Etrf ;tþ1 ¼ 1
dS

1� a0 � c0 � bHr2rc;t 1� q2rcrf ;t

� �
þ eSr2rf ;t

� �

Since rf ;tþ1 ¼ Etrf ;tþ1 þ urf ;tþ1, we obtain the following testable short run
relationship

rf ;tþ1 ¼ e0 � bH
�
dS

� �
r2rc;t 1� q2rcrf ;t

� �
þ eS

�
dS

� �
r2rf ;t þ urf ;tþ1 ð8Þ

where e0 ¼ 1� a0 � c0ð Þ�dS. Equation (8) relates futures returns to their own
volatility and to the variability of the optimally hedged portfolio. The short-run
dynamics of this relationship is in line with the stylized facts detected in the paper
by Fagan and Gencay (2008), where the negative correlation between futures
returns and hedger net long positions supports the idea that large speculators are net
buyers in rising markets, while large hedgers are net sellers. This behavior is
encompassed by our (more general) model, when it contemplates the case of
hedgers being net sellers—when bH is negative—and futures returns rising.

3 A Bivariate Non Linear CCC-TGARCH Representation

We focus on futures prices since commodity prices are typically discovered in
futures markets and price changes are passed on from futures to cash markets
(Garbade and Silber 1983). Economic theory, however, suggests that the prices of
cash assets and of the corresponding futures contracts are jointly determined (Stein
1961). Our empirical estimation thus includes a relationship that describes the
behavior of cash returns, along with a futures returns relationship, and analyzes their
covariance. Over the longer term equilibrium, prices are ultimately determined in the
cash market as all commodity futures prices at delivery date converge to the cash
price (plus or minus a constant). This behavior justifies the existence of a cointe-
gration relationship between futures and cash prices and the use of an error cor-
rection parameterization of the conditional mean equation for rc;t, where cash prices
adjust to futures prices (the forcing variable) in line with the adopted framework of
price discovery.3 In the long run the relation between cash and futures prices holds
and accounts for the presence of an identified basis or convenience yield.

3 On this point see Figuerola-Ferretti and Gonzalo (2010). They successfully apply a VECM
approach to cash and futures commodity returns where cash prices adjust to futures prices, in line
with the Garbade and Silber (1983) framework of price discovery.
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A non linear bivariate GARCH model for futures and spot returns is thus esti-
mated. The conditional mean of the futures returns is modeled by Eq. (8′), while the
conditional mean of the cash returns, Eq. (9), is parameterized by an autoregressive
error correction structure and the conditional second moments are quantified by a
bivariate CCC-TGARCH(1,1).

rc;t ¼ a0 þ
Xn

j¼1

ajrc;t�j þ
Xm

k¼1

bkrf ;t�k þ e1 ft�1 � d0 � d1ct�1ð Þ þ urc;t ð9Þ

rf ;t ¼ e0 � bH=dS
� �

h2rc;t�1 � h2rcrf ;t�1

.
h2rf ;t�1

� �
þ eS

�
dS

� �
h2rf ;t�1 þ urf ;t ð80Þ

ut ¼
urc;t

urf ;t

" #

ut Xt�1j N 0;Htð Þ

Ht ¼ DtRDt

R ¼ 1 qrcrf
qrcrf 1

" #

Dt ¼
hrc;t 0

0 hrf ;t

" #

h2rc;t ¼ -c þ ach
2
rc;t�1 þ bcu

2
rc;t�1;

h2rf ;t ¼ -f þ af h
2
rf ;t�1 þ bf u

2
rf ;t�1 þ cf St�1u

2
rf ;t�1

St�1 ¼
1 if urf ;t�1\0

0 if urf ;t�1 � 0

(

4 The Empirical Behavior of the Oil Market

Our daily data span the 3 January 1990–26 January 2010 time period. All contracts
are traded on the NYMEX (New York Mercantile Exchange), refer to West Texas
Intermediate oil price, and are taken from Datastream. Futures prices relate to a
continuation contract. Both spot (Ct) and futures prices (Ft) are expressed in US
dollars. Futures prices correspond to the highly liquid 1 month (nearest to delivery)
futures contract.4 Returns are computed as first differences of the log of the price
levels, their summary statistics are presented in Table 1.

Average daily returns and standard deviations are small but not negligible. Both
cash and futures returns have mildly skewed and significantly leptokurtic distri-
butions. The departure from normality is confirmed by the size of the corresponding
Jarque Bera (J.B.) test statistics whereas the presence of volatility clustering

4 The futures contract expires on the third business day prior to the 25th calendar day of the month
preceding the delivery month. If the 25th calendar day of the month is a non-business day, trading
ceases on the third business day prior to the business day preceding the 25th calendar day.
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supports the choice of a GARCH parameterization of the conditional second
moments. As expected, the logarithms of the prices of the cash and futures contracts
are always I(1) and their first differences I(0).5

Table 2 presents parsimonious estimates of the conditional mean and variance
equations of the bivariate non linear CCC-TGARCH(1,1) system set forth in
Sect. 3. The overall quality of fit is satisfactory. The estimated parameters are
significantly different from zero and the conditional heteroskedasticity of the
residuals is captured by our GARCH parameterization.6 The usual misspecification
tests suggest that the standardized residuals mzt , zt ¼ rc;t; rf ;t, are symmetric and well

behaved; the J.T.A. test statistics are not significant, E mzt½ � ¼ 0, E m2zt

h i
¼ 1, and m2zt

is serially uncorrelated. Considering that dS is positive by construction and that the
sign of the coefficient ratios bH

�
dS and eS

�
dS will depend upon the sign of bH and

eS, the futures return mean Eq. (8′) provides some useful information on market
drivers:

(i) coefficient bH estimates are positive reflecting the predominance of con-
sumer agents on the market. This result is also in line with the effects of
hedging pressure, where futures prices increase when hedgers trade short
and decrease when hedgers are long7;

(ii) the absolute value of the ratio between speculative and hedging factors

eSr2rf ;t
.
bHr2rc;t 1� q2rcrf ;t

� �
—see the SPEC index set forth in Table 2—

measures the relative impact of different sources of risk on futures returns
using a “level of importance” criterion.8 It is higher than 1 which suggests
that speculators are more reactive than hedgers;

Table 1 Descriptive statistics

Return Mean St.
dev.

Sk. Kurt. J.B. Q2
xð1Þ Q2

xð6Þ

Oil
futures

0.000270 0.0250 −0.95 17.52 67710.6 73.16
[0.00]

369.33
[0.00]

Oil cash 0.000240 0.0240 −1.23 24.63 1333762.2 147.36
[0.00]

672.60
[0.00]

Daily sample from 3 January 1990 to 26 January 2010 (5,325 observations)
Notes Sk. skewness; Kurt. kurtosis; J.B. Jarque Bera test statistic; Q2

xðkÞ Ljung Box Q-statistic for
kth order serial correlation of the squared variable x2; probability levels are in square brackets

5 The unit root test statistics are not reported due to lack of space.
6 The t-ratios reported in the tables are based on the robust quasi-maximum likelihood estimation
procedure of Bollerslev and Wooldridge (1992) since the J.B. test statistics reject the null of
normality of the standardized residuals.
7 See Chang (1985) and Bessembinder (1992).
8 For a definition of this measure, see Achen (1982, pp. 72–73).
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Table 2 Bivariate non linear CCC-TGARCH(1,1) full sample estimates

Conditional means n = 1, m = 1 Conditional Variances

rc;t rf ;t

a0 −0.014
(−84.75)

-c 1.2E − 05
(38.38)

-f 1.6E − 05
(47.89)

a1 −0.223
(−26.98)

ac 0.895
(891.37)

af 0.876
(701.98)

bc 0.083
(83.99)

bf 0.088
(58.37)

b1 0.245
(32.34)

cf 0.020 (7.43)

qrcrf 0.761
(227.70)

e1 0.071
(87.24)

d0 –

d1 0.956
(1492.95)

e0 1.1E – 04
(0.65)

bH
�
dS

� �
3.968
(5.13)

eS
�
dS

� �
2.019
(6.58)

Residual diagnostics

mrct ¼ urct
. ffiffiffiffiffiffiffi

h2rct
q

mrf t ¼ urf t

� ffiffiffiffiffiffiffi
h2rf t

q

E mrctð Þ −0.002 [0.85] E vrf t
� �

−0.003 [0.80]

E m2rct

� �
1.000 E m2rf t

� �
1.000

Sk. −0.583 Sk. −0.542

Kurt. 7.045 Kurt. 5.924

Q2
xð1Þ 0.160 [0.69] Q2

xð1Þ 0.068 [0.79]

Q2
xð6Þ 11.691 [0.07] Q2

xð6Þ 1.654 [0.95]

J.T.A. 0.073 [0.97] J.T.A. 1.321 [0.265]

J.B. 11116.0 [0.00] J.B. 7906.65 [0.00]

SPEC 1.1649

LLF 27560.79

Notes Sk. skewness;Kurt. excess kurtosis;Q2
xðkÞLjungBoxQ-statistic for kth order serial correlation

of the squared variable x2 ; J.T.A. jointWald test of the null hypothesis of no asymmetry distributed as
v2 with 3 degrees of freedom (Engle andNg 1993); SPEC speculative to hedging factors ratio defined

as the absolute value of eSr2rf ;t
.
bHr2rc ;t 1� q2rcrf ;t

� �
; LLF log likelihood function
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(iii) speculators are risk averse since the corresponding eS coefficient estimates
are positive; this finding may be due to the size of the volatility shocks. This
will be further investigated in the next section as it could be affected by
futures pricing regime shifts.

In principle, the dynamic specification of our model might introduce distortive
effects in the estimation of the optimal hedge ratio b�, which reduce its effective-
ness. We have thus performed the standard comparison of its hedging performance
with the performance of a naive portfolio hedge ratio (b ¼ 1) and of an OLS hedge
ratio, obtained from the futures return coefficient estimate of a regression of cash
returns on a constant and on futures returns. An artificial daily portfolio is intro-
duced where an investor is assumed to buy (sell) one unit of the cash asset and to
sell (buy) b units of the corresponding futures contract. The unconditional portfolio
return standard deviations are computed over the whole sample and are set forth in
Footnote 9.9 The naive hedge portfolio is clearly outperformed by the optimal
hedge portfolios. Moreover, our CCC-TGARCH model provides the minimum risk
hedge, which supports the validity of our parameterization.

5 Hedging, Speculation, and Futures Pricing Regime Shifts

Sarno and Valente (2000) and Alizadeh and Nomikos (2004) analyzed the changes
in the relationship between futures and spot stock index returns using a Markov
switching model set out originally by Hamilton (1994). This technique is used here
in order to analyze the shifts over two regimes in hedging and speculative behavior.

Using the full sample estimates of the conditional second moments obtained in
the previous section, Eq. (8′) is adapted to a two-state Markov switching framework
in which the drivers of futures returns are assumed to switch between two different
processes, dictated by the state of the market.10

9

CCC-TGARCH estimates OLS estimates Naive

Optimal
hedge ratio
β*

St. dev. of the
optimal hedge
portfolio

Optimal
hedge ratio
β*

St. dev. of the
optimal hedge
portfolio

St. dev. of the
naive portfolio

0.75 0.016309 0.70 0.016416 0.018018

10 In order to eliminate the potential errors-in-variables distortions due to the use of a two-step
procedure, we follow Pagan (1984). We replace the conditional variances by the fitted value of a
regression of the futures (cash) return conditional variance on a constant, on its own lagged values
(up to two lags), on the lagged values (up to two lags) of the conditional variance of the cash
(futures) returns and on the one period lagged cash rate of return. The estimated coefficients are
consistent, whereas the corresponding standard errors may underestimate their true values.
However, this potential bias does not affect the SPEC index, which is consistent.

150 G. Cifarelli and G. Paladino



Equation (8′) is thus rewritten as

rf ;t ¼ e0st � bHst

.
dSst

� �
h2rc;t�1 � h2rcrf ;t�1=h

2
rf ;t�1

� �
þ eSst

.
dSst

� �
h2rf ;t�1 þ urf ;st t ð10Þ

where urf ;stt �N 0; r2st

� �
, and the unobserved random variable st indicates the state

of the market.
The value of the current regime st is assumed to depend on the state of the

previous period only, st�1, and the transition probability P st ¼ j st�1j ¼ if g ¼ pij
gives the probability that state i will be followed by state j. In the two state case
p11 þ p12 ¼ 1 and p22 þ p21 ¼ 1, and the corresponding transition matrix is given
by

P ¼ p11 1� p22
1� p11 p22

	 

ð11Þ

The joint probability of rf ;t and st is then given by the product

p rf ;t; st ¼ jjYt�1;w
� � ¼ f rf ;t

��st ¼ j; Yt�1;w
� �

P st ¼ jjYt�1;wð Þ j ¼ 1; 2 ð12Þ

where Yt�1 is the information set that includes all past information on the popu-

lation parameters and w ¼ e0st ; bHst

.
dSst

� �
; eSst

.
dSst

� �
; r2st

� �
is the vector of

parameters to be estimated. f ð:Þ is the density of rf ;t, conditional on the random
variable st, and Pð:Þ is the conditional probability that st will take the value j.

Following Hamilton (1994, Chap. 22), the density distribution of rf ;t for the
two-state case is

g rf ;t
��Yt�1;w

� � ¼ 1
ffiffiffiffiffiffiffiffiffiffi
2pr21

p exp
�u2rf ;1t
2r21

)(

þ 1
ffiffiffiffiffiffiffiffiffiffi
2pr22

p exp
�u2rf ;2t
2r22

)(

ð13Þ

where urf ;stt is the residual of Eq. (10). If the unobserved state variable st is i.i.d.
maximum likelihood estimates of the parameters in w are obtained maximizing the
following log likelihood function with respect to the unknown parameters

LðwÞ ¼
XT

t¼1

log g rf ;t
��Yt�1;w

� � ð14Þ

where T is the total number of sample observations.
In this paper the identification process of the nature of the regimes, essential for

the interpretation of a Markov switching model, relies on the estimates of Eq. (10)
and on the analysis of the behavior over time of the state probabilities. Table 3 sets
out the estimates of Eq. (10). The quality of the fit is highly satisfactory; the
relevant coefficients change across regimes and are significantly different from zero.
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The regime (state) 2 variance is three times larger than that of regime (state) 1. The
probability of switching from a low variance to a high variance state p12 is much
lower than the probability of switching from a high variance to a low variance state
p21. Indeed the transition probabilities are p12 ¼ 0:009 and p21 ¼ 0:074 and indi-
cate that the average expected duration of being in state 1 is close to 110 working
days (about 5 months) and the average expected duration of being in state 2 is of 13
working days.11

A relevant difference in hedging and speculation can be easily detected. A risk
averse speculative behavior in state 1 is maintained despite the increase in volatility
across regimes; speculators only slightly decrease their demand for futures contracts
whenever the volatility rises. What really stands out is the change in hedgers’
behavior; they increase their demand in state 2 and switch to a speculative attitude
(the SPEC index trebles from 0.58 to 1.70 and b� collapses from 0.746 to 0.006
because of a sharp drop of the covariance between cash and futures returns).12

The upper graph of Fig. 1 presents the behavior over the sample of the time t
probability that the market is in regime 1. The lower graph sets out the rate of return
of the corresponding futures contract. Visual inspection suggests that regime 1 may
be associated with periods in which return variability is low (and thus regime 2 with

Table 3 Markov switching regime estimates of Eq. (10)

Oil

st = 1 st = 2

pst ; not; sc 0.009 (6.17) 0.074 (7.52)

e0st −0.000 (−0.14) −0.004 (−2.04)

bHst

.
dSst

� �
2.783 (2.73) 5.505 (3.50)

eSst

.
dSst

� �
2.632 (6.19) 2.356 (4.05)

r2st 0.018 (96.27) 0.053 (61.36)

Number of days in regime st
a 110 13

SPEC 0.583 1.699

Optimal hedge ratio b� 0.746 0.006

LLF 12637.924

Note a average expected duration of being in state st

11 The average expected duration of being in state 1 is computed according to Hamilton (1989) asP1
i¼1 ip

i�1
11 1� p11ð Þ ¼ 1� p11ð Þ�1¼ p12ð Þ�1. If we posit that regime 1 (2) at time t holds if the

probability of being in state 1 based on data through t is larger (smaller) than 0.5, the oil market
is in the low volatility regime 1 for 4,777 days and in the high volatility regime 2 for 466 days.
12 We detect therefore an overall increase in the share of agents that follow a speculative rationale
and a corresponding decrease in the number of standard risk minimizing investors.
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periods in which it is high).13 Since regime 2 essentially corresponds to the tur-
bulence associated with the Gulf war of 1990 and with the oil price turmoil of 2008,
our empirical evidence is in line with the interpretation of the recent price dynamics
provided by Tokic (2011), who maintains that the institutional investors’ recent
inroads in the oil market, motivated by a desire to diversify their portfolios and/or
hedge inflation, destabilized the interaction between commercial participants and
liquidity-providing speculators. More precisely, in periods of severe price turbu-
lence, such as the 2008 price upswing, well informed commercial hedgers lose their
informational advantage and are misled by unexplained price shifts into signifi-
cantly reducing their short positions, thus engaging in positive feedback trading.
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Fig. 1 Oil market regime 1 probability

13 According to the standard ADF unit root tests the time t regime 1 probability time series is I(0).
The correlation coefficients between the regime 1 probability and the daily oil futures’ rate of
return and standard deviation are, respectively, 0.035 (2.52) and −0.756 (−83.68), where the
t-ratios are in parentheses. Regime 1 is to be associated with both low futures return variability
and, to a lesser extent, with positive futures price rates of change (i.e. possibly with a bullish
market), and regime 2 with high return variability and negative futures price rates of change
(i.e. with a bearish market).
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6 Conclusions

This paper has examined the dynamic behavior of futures returns in the oil market.
The interaction between hedgers and speculators is modelled using a highly non
linear parameterization where hedgers react to deviations from the minimum var-
iance of the hedged portfolio, and speculators respond to standard expected risk
returns considerations. The relationship between expected spot and futures returns
and time varying volatilities is estimated using a non linear in mean CCC-
TGARCH approach. The results point to the suitability of this choice because of the
quality of the fit and of the sound meaning of the parameter estimates. In spite of the
growing role of speculation, over the 1990–2010 sample period, hedgers play a
dominant role since futures returns dynamics are mostly associated with the vari-
ability of the hedged portfolio, especially in the frequent low volatility periods. We
account for the impact of financial integration of the commodity markets by
allowing the demand of futures to be dependent upon the “state of the market” via a
Markov regime switching approach. Both visual inspection and correlation analysis
suggest that regime 1 is associated with periods in which return variability is low
and regime 2 with periods in which it is high. Optimal hedging ratios computed in
each state are smaller in the high volatility regime. The differences across regimes
in hedging and speculative behavior are distinctive. The impact on futures returns of
the ratio of speculative to hedging drivers seems to be strong, when market vola-
tility is high.

References

Achen C (1982) Interpreting and using regression. Sage Publications, Thousand Oaks
Ai C, Chatrath A, Song F (2006) On the comovement of commodity prices. Am J Agric Econ

88:574–588
Alizadeh A, Nomikos N (2004) A Markov regime switching approach for hedging stock indices.

J Futures Markets 24:649–674
Bessembinder H (1992) Systematic risk, hedging pressure and risk premiums in futures markets.

Rev Finan Stud 5:637–667
Bollerslev T, Wooldridge JM (1992) Quasi-maximum likelihood estimation and inference in

dynamic models with time-varying covariances. Econometr Rev 11:143–172
Cashin P, McDermott CJ, Scott A (1999) The myth of comoving commodity prices. IMF working

paper 169
Cecchetti SG, Cumby RE, Figlewski S (1988) Estimation of the optimal futures hedge. Rev Econ

Stat 70:623–630
Chan W, Young D (2006) Jumping hedges: an examination of movements in copper spot and

futures markets. J Futures Markets 26:169–188
Chang B (1985) Returns to speculators and the theory of normal backwardation. J Finan 4:193–208
Engle RF, Ng VK (1993) Measuring and testing the impact of news on volatility. J Finan 48:1749–

1778
Fagan S, Gencay R (2008) Liquidity-induced dynamics in futures markets. MPRA working paper

6677 January
Figlewski S (1984) Hedging performance and basis risk in stock index futures. J Finan 39:657–669

154 G. Cifarelli and G. Paladino



Figuerola-Ferretti I, Gonzalo J (2010) Modelling and measuring price discovery in commodity
markets. J Econometr 158:95–107

Garbade KD, Silber WL (1983) Price movements and price discovery in futures and cash markets.
Rev Econ Stat 65:289–297

Hamilton JD (1989) A new approach to the economic analysis of nonstationary time series and the
business cycle. Econometrica 57:357–384

Hamilton JD (1994) Time series analysis. Princeton University Press, Princeton
Irwin SH, Sanders DR, Merrin RP (2009) Devil or angel? The role of speculation in the recent

commodity price boom (and bust). J Agric Appl Econ 41:377–391
Johnson LL (1960) The theory of hedging and speculation in commodity futures. Rev Econ Stud

27:139–151
Kolb RW, Okunev J (1992) An empirical evaluation of the extended Mean-Gini coefficient for

futures hedging. J Futures Markets 12:177–186
Kroner KF, Sultan J (1993) Time-varying distribution and dynamic hedging with foreign currency

futures. J Finan Quant Anal 28:535–551
Lee TH, Yoder J (2007) Optimal hedging with a regime-switching time-varying correlation Garch

model. J Futures Markets 27:495–516
Le Pen Y, Sévi B (2010) Revisiting the excess co-movements of commodity prices in a data-rich

environment. Memo Université de Nantes, Nantes
Lescaroux F (2009) On the excess co-movement of commodity prices—a note about the role of

fundamental factors in short-run dynamics. Energy Policy 37:3906–3913
Lien D, Tse YK (2000) Hedging downside risk with future contracts. Appl Finan Econ 10:163–170
McKinnon RL (1967) Futures markets, buffer stocks and income stability for primary producers.

J Polit Econ 73:844–861
Pagan A (1984) Econometric issues in the analysis of regressions with generated regressors. Int

Econ Rev 25:221–247
Pyndick RS, Rotemberg JJ (1990) The excess co-movement of commodity prices. Econ J

100:1173–1189
Sarno L, Valente G (2000) The cost of carry model and regime shifts in stock index futures

markets: an empirical investigation. J Futures Markets 20:603–624
Stein JL (1961) The simultaneous determination of spot and futures prices. Am Econ Rev

51:1012–1025
Stulz RM (1996) Rethinking risk management. J Appl Corp Finan 9:8–24
Tokic D (2011) Rational destabilizing speculation, positive feedback trading, and the oil bubble of

2008. Energy Policy 39:2051–2061
Ward RW, Fletcher LB (1971) From hedging to pure speculation: a micro model of futures and

cash market positions. Am J Agric Econ 53:71–78

Oil Futures Market: A Dynamic Model of Hedging and Speculation 155



Evaluating the Empirical Performance
of Alternative Econometric Models for Oil
Price Forecasting

Andrea Bastianin, Matteo Manera, Anil Markandya and Elisa Scarpa

Abstract The empirical literature is very far from any consensus about the
appropriate model for oil price forecasting. Several specifications have been pro-
posed: some concentrate on the relationship between spot and futures prices
(“financial” models), while others assign a key role to economic fundamentals
(“structural” models). In this work we systematically test and evaluate the ability of
several alternative econometric specifications to capture the dynamics of oil prices.
Moreover, we propose a new class of models which combines the relevant aspects
of financial and structural specifications (“mixed” models). We evaluate the fore-
casting performance of each class of models using different measures of forecast
accuracy. We also analyse the effects of different data frequencies on the coefficient
estimates and forecasts of each selected specification. Our empirical findings sug-
gest that financial models are to be preferred to time series models. Both financial
and time series models are better than mixed and structural models. Although the
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1 Introduction

The relevance of oil in the world economy is undisputable. The world oil production
in 2009 amounted to 82,165 thousand barrels per day (tbd). OPEC countries pro-
duced 33,363 tbd (40.6 % of the world oil production) in 2009, while OECD
countries and Europe (25 countries) were responsible of 19,427 tbd (23.6 %) and
2,187 tbd (2.7 %), respectively. In January 2010 world oil stocks were estimated at
1,191,066 million barrels. If OPEC countries alone hold 80.2 % of world oil
reserves, OECD and European countries can directly count only on 7 and 0.8 %,
respectively. Moreover, world oil consumption in 2009 was measured in 85,006 tbd,
59.6 % of which originates from the OECD countries (Eni 2010). The impact of oil
on the financial markets is at least equally important. The NYMEX average daily
open interest volume (OIV)1 on oil futures and options contracts, which was equal to
634,549 contracts during the period 2002–2005, increased to 1,255,986 contracts
during the period 2006–2010 (Commodity Futures Trading Commission 2010).

Moreover, the peculiar nature of oil price dynamics has attracted the attention of
many researchers in recent years. As an example, in Fig. 1 we report the behaviour
of the WTI spot price over the period January 1986–December 2005. From an
inspection of this graph, it is easy to verify that both level and volatility of the WTI
spot price are highly sensitive to specific economic and geo-political events. For
instance, the small price fluctuations of the years 1986–1990 are the result of the
OPEC’s production quotas repeated adjustments. The 1990 sharp increase in WTI
spot price is obviously due to the Gulf war. The remarkable price falls of the period
1997–1998 coincide with the pronounced slowdown of Asian economic growth.
The reduction in OPEC’s production quotas of 1999 has been followed immedi-
ately by a sharp price increase. Finally, if the price decreases in 2001 are related to
terrorist attack of 11 September, the reduction of the WTI spot price levels recorded
in the period 2002–2005 are again justified by falling OPEC production quotas and
spare capacity.

The more recent evolution of the WTI spot price shows that forecasting the price
of crude oil is very challenging. In August 2005 oil price has risen to over US$ 60
per barrel (pb), while one year later it has topped out at the record level of US$
77.05 pb. Experts have again attributed the spike in oil price to a variety of eco-
nomic and geo-political factors, including the North Korean crisis, the Israel-
Lebanon conflict, the Iranian nuclear threat and the decline in US oil reserves. At
the end of the summer 2006, the WTI oil price has begun to decrease and reached
the level of US$ 56.82 pb on 20 October 2006. In the meantime, OPEC has
announced production cuts to stop the sliding price. On 16 January 2007 prices
have been even lower: US$ 51.21 pb for the WTI spot price and US$ 51.34 for the
first position of the NYMEX oil futures contract.

1 Open interest volume is measured as the sum of all long contracts (or, equivalently, as the sum
of all short contracts) held by market participants at the end of a trading day. It is a proxy for the
flow of money into the oil futures and options market.
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Given the relevance of oil in the world economy and the peculiar characteristics
of the oil price time series, it is not surprising that considerable effort has been
devoted to the development of different types of econometric models for oil price
forecasting.

Several specifications have been proposed in the economic literature. Some are
based on financial theory and concentrate on the relationship between spot and
futures prices (“financial” models). Others assign a key role to variables explaining
the characteristics of the physical oil market (“structural” models). These two main
groups of models have often been compared to standard time series models, such as
the random walk and the first-order autoregressive model, which are simple and,
differently from financial and structural models, do not rely on additional explan-
atory variables.

It should be noticed that many econometric models for oil price forecasting
available in the literature are single-equation, linear reduced forms. Two recent
noticeable exceptions are represented by Moshiri and Foroutan (2006) and Dees
et al. (2007). The first study uses a single-equation, non-linear artificial neural
network model to forecast daily crude oil futures prices over the period 4 April
1983–13 January 2003. The second contribution discusses a multiple-equation,
linear model of the world oil market which specifies oil demand, oil supply for non-
OPEC producers, as well as a price rule including market conditions and OPEC
behaviour. The forecasting performance of this model is assessed on quarterly data
over the period 1995–2000.

The empirical literature is very far from any consensus about the appropriate
model for oil price forecasting that should be implemented. Findings vary across
models, time periods and data frequencies. This study provides fresh new evidence
to bear on the following key question: does a best performing model for oil price
forecasting really exist, or aren’t accurate oil price forecasts anything more than a
mere illusion?

Relative to the previous literature, this work is novel in several respects. First of
all, in this contribution we test and systematically evaluate the ability of several
alternative econometric specifications proposed in the literature to capture the
dynamics of oil prices. We have chosen to concentrate our investigation on single-
equation and multiple-equations linear reduced forms, since models of this type are
the most widely used in the literature and by the practitioners. In this respect, our
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study complements the empirical findings presented in Moshiri and Foroutan
(2006), which are focused on the forecasting performance of a single non-linear
model.

Second, this study analyses the effects of different data frequencies (daily,
weekly, monthly and quarterly) on the coefficient estimates and forecasts obtained
using each selected econometric specification. The factors which potentially affect
the goodness of fit and forecasting performance of an econometric model are
numerous, the most important being sample period and data frequency. The fact
that no unanimous conclusions could be drawn by previous studies on the fore-
casting performance of similar models may depend upon, among other things, the
particular data frequency used in each investigation.

Third, we compare different models at different data frequencies on a common
sample and common data. For this purpose, we have constructed specific data sets
which enable us to evaluate different types of econometric specifications involving
different explanatory variables on the same sample period. Within our composite
data base, the WTI spot oil price as well as the majority of the explanatory variables
are recorded at different frequencies.

Fourth, we evaluate the forecasting performance of each selected model using
one step-ahead forecasts, as well as different measures of forecast accuracy based on
symmetric and asymmetric loss functions. At the same time, we present formal
statistical procedures for comparing the predictive ability of the models estimated.

Lastly, we propose a new class of models, namely the mixed models, which
combine the relevant aspects of the financial and structural specifications proposed
in the literature.

The chapter is organized as follows. In Sect. 2 we briefly review the existing
empirical literature related to oil price forecasting. Section 3 presents and describes
the data collected for the empirical analysis. In Sect. 4 the empirical results obtained
by forecasting oil prices with alternative econometric models are discussed. The
performance of each model is analysed using different measures of forecasting
ability and graphical evaluation “within” each class of models (i.e. financial,
structural, time series and mixed models). Section 5 summarizes the forecasting
performance of the alternative specifications, with particular emphasis on
“between”-class analogies and differences. Some conclusions and directions for
future research are presented in Sect. 5.

2 The Existing Literature on Oil Price Forecasting

The literature on oil price forecasting has focused on two main classes of linear,
single-equation, reduced-form econometric models. The first group (“financial”
models) includes models which are directly inspired by financial economic theory
and based on the efficient market hypothesis (EMH), while models belonging to the
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second class (“structural” models) consider the effects of oil market agents and real
variables on oil prices.2 Both financial and structural models often use pure time
series specifications for benchmarking.3

2.1 Financial Models

In general, financial models for oil price forecasting examine the relationship
between the oil spot price at time t (St) and the oil futures price at time t with
maturity T (Ft), analyzing, in particular, whether futures prices are unbiased and
efficient predictors of spot prices. The reference model is:

Stþ1 ¼ b0 þ b1Ft þ etþ1 ð1Þ

where the joint null hypothesis of unbiasedness (β0 = 0 and β1 = 1) should not be
rejected, and no autocorrelation should be found in the error terms (efficiency). A
rejection of the joint null hypothesis on the coefficients β0 and β1 is usually
rationalised by the literature in terms of the presence of a time-varying risk
premium.

A sub-group of models, which are also based on financial theory but have been
less investigated, exploits the following spot-futures price arbitrage relationship:

Ft ¼ Ste
ðrþx�dÞ T�tð Þ ð2Þ

where r is the interest rate, ω is the cost of storage and δ is the convenience yield.4

Samii (1992) attempts at unifying the two approaches described in Eqs. (1) and
(2) by introducing a model where the spot price is a function of the futures price and
the interest rate. Using both daily (20 September 1991–15 July 1992) and monthly
(January 1984–June 1992) data on WTI spot price and futures prices with 3- and 6-
month maturity, he concludes that the role played by the interest rate is unclear and
that, although the correlation between spot and futures prices is very high, it is not
possible to identify which is the driving variable.

2 As pointed out in the Introduction and at the beginning of Sect. 2, the models analysed in this
study are linear, single-equation, reduced-forms. In this context, we use the term “structural
model” to identify a specification whose explanatory variables capture the real and strategic (as
opposed to financial) aspects of the oil market.
3 Interesting exceptions are Pindyck (1999) and Radchenko (2005), who propose alternative
forecasting models in a pure time series framework. See Sect. 2.2 for details.
4 The arbitrage relationship (2) means that the futures price must be equal to the cost of financing
the purchase of the spot asset today and holding it until the futures maturity date (which includes
the borrowing cost for the initial purchase, or interest rate, and any storage cost), once the
continuous dividend yield paid out by the underlying asset (i.e. the convenience yield) has been
taken into account. See, among others, Clewlow and Strickland (2000) and Geman (2005) for
details on the arbitrage relationship (2) for energy commodities.
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An overall comparison of financial and time series models is offered by Zeng and
Swanson (1998), who evaluate the in-sample and out-of-sample performance of
several specifications. The authors use a daily dataset over the period 4 January
1990–31 October 1991 and specify a random walk, an autoregressive model and
two alternative Error Correction models (ECM, see Engle and Granger 1987), each
with a different definition of long-run equilibrium. The deviation from the equi-
librium level which characterizes the first ECM is equal to the difference between
the futures price tomorrow and the futures price today, i.e. the so-called “price
spread”. In the second ECM, the error correction term recalls the relationship
between spot and futures prices, which involves the cost of storage and the con-
venience yield, as reported in Eq. (2). The predictive performance of each model is
evaluated using several formal and informal criteria. The empirical evidence shows
that the ECM specifications outperform the others. In particular, the ECM based on
the cost-of-storage theory performs better than the ECM which specifies the error
correction term as the spot-futures price spread.

Bopp and Lady (1991) investigate the performance of lagged futures and spot oil
prices as explanatory variables in forecasting the oil spot price. Using monthly data
on spot and futures prices for heating oil during the period December 1980–October
1988, they find empirical support to the cost-of-storage theory.5 The authors also
compare a random walk against the reference financial model. In this case, the
empirical evidence suggests that both models perform equally well.

Serletis (1991) analyses daily data on 1-month futures price (as a proxy for the
spot price) and 2-month futures price (quoted at NYMEX) for heating oil, unleaded
gasoline and crude oil, relative to the period 1 July 1983–31 August 1988 (the time
series of gasoline starts on 14 March 1985). He argues that the presence of a time-
varying premium worsens the forecasting ability of futures prices.

In the empirical literature on oil prices there is no unanimous consensus about
the validity of EMH. For instance, Green and Mork (1991) offer evidence against
the validity of unbiasedness and EMH, analysing monthly prices on Mideast Light
and African Light/North Sea crude oils over the period 1978–1985. Nevertheless,
the authors notice that, if the subsample 1981–1985 is considered, EMH is sup-
ported by the data, because of the different market conditions characterizing the two
time periods.

The unreliability of unbiasedness and EMH is also pointed out by Moosa and
Al-Loughani (1994), who analyse WTI monthly data covering the period January
1986–July 1990. The authors exploit cointegration between the series on spot price
and 3- and 6-month futures contracts using an ECM, and show that futures prices
are neither unbiased nor efficient. Moosa and Al-Loughani apply a GARCH-in-
mean model to take into account the time-varying structure of the risk premium.

5 Two different spot prices are considered, namely the national average price reported by the
Energy Information Administration (EIA) in the Monthly Energy Review, and the New York
Harbour ex-shore price, while the futures contract is quoted at NYMEX.
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Gulen (1998) asserts the validity of EMH by introducing the posted oil price as
an additional explanatory variable in the econometric specification. In particular,
using monthly data on WTI (spot price and 1-, 3- and 6-month futures prices) for
the period March 1983–October 1995, he verifies the explanatory power of the
posted price by using both futures and posted prices as independent variables.
Empirical evidence from this study suggests that futures prices outperform the
posted price, although the latter has some predictive content in the short horizon.

Morana’s analysis (2001), based on daily data from 2 November 1982 to 21
January 1999, confirms that the Brent forward price can be an unbiased predictor of
the future spot price, but in more than 50 % of the cases the sign of the changes in
oil price cannot be accurately predicted. He compares a financial model with a
random walk specification and shows that, when considering a short horizon, both
specifications are biased.

Chernenko et al. (2004) test the EMH by focusing on the price spread
relationship:

StþT � St ¼ b0 þ b1 Ft � Stð Þ þ etþ1 ð3Þ

Analysing monthly data on WTI for the period April 1989–December 2003, the
authors comparemodel (3) with a randomwalk specification and find that the empirical
performance of the two models is very similar, confirming the validity of EMH.

The same model (3) is tested by Chinn et al. (2005) with a monthly dataset on
WTI spot price and 3-, 6- and 12-month futures prices covering the period January
1999–October 2004. The empirical findings are, in this case, supportive of unbi-
asedness and EMH.

Another interesting application of financial models to the oil spot-futures price
relationship is proposed by Abosedra (2005), who compares the forecasting ability
of the futures price in model (3) with a naïve forecast of the spot price. Specifically,
assuming that the WTI spot price can be approximated by a random walk with no
drift, he forecasts the daily 1-month-ahead price using the previous trading day’s
spot price and constructs the naïve monthly predictor as a simple average of the
daily forecasts. Using data for the period January 1991–December 2001, he finds
that both the futures price and the naïve forecast are unbiased and efficient pre-
dictors for the spot price. The investigation of the relationship between the forecast
errors of the two predictors allows the author to conclude that the futures price is a
semi-strongly efficient predictor, i.e. the forecast error of the futures price cannot be
improved by any information embedded in the naïve forecast.

2.2 Structural Models

Structural models, that is models based on economic fundamentals, emphasise the
importance of explanatory variables describing the peculiar characteristics of the oil
market. Some examples are offered by variables which are strategic for the oil
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market (e.g. industrial and government oil inventory levels), “real” variables
(e.g. oil consumption and production), and variables accounting for the role played
by OPEC in the international oil market.

Kaufmann (1995) models the real import price of oil using as structural
explanatory variables the world oil demand, the level of OECD oil stocks, OPEC
productive capacity, as well as OPEC and US capacity utilisation (defined as the
ratio between oil production and productive capacity). The author also accounts for
the strategic behaviour of OPEC and the 1974 oil shock with specific dummy
variables. His analysis exploits an annual dataset for the period 1954–1989.
Regression results show that his specification is successful in capturing oil price
variations between 1956 and 1989, that is the coefficients of the structural variables
are significant and the model explains a high percentage of the oil price changes
within the sample period.

More recently, Kaufmann (2004) and Dees et al. (2007) specify a different
forecasting model on a quarterly dataset. In particular, the first paper refers to the
period 1986–2000, while the second contribution considers the sample 1984–2002.
In these studies the authors pay particular attention to OPEC behaviour, using as
structural regressors the OPEC quota (defined as the quantity of oil to be produced
by OPEC members), OPEC overproduction (i.e. the quantity of oil produced which
exceeds the OPEC quota), capacity utilisation and the ratio between OECD oil
stocks and OECD oil demand. Using an ECM, the authors show that OPEC is able
to influence real oil prices, while their econometric specification is able to produce
accurate in-sample static and dynamic forecasts.

A number of authors introduce the role of the relative oil inventory level (defined
as the deviation of oil inventories from their normal level) as an additional deter-
minant of oil prices, for this variable is supposed to summarize the link between oil
demand and production. In general, two kinds of oil stocks can be considered,
namely industrial and governmental. The relative level of industrial oil stocks (RIS)
is calculated as the difference between the actual level (IS) and the normal level of
industrial oil stocks (IS*), the latter corresponding to the industrial oil inventories
de-seasonalised and de-trended. Since the government oil stocks tend to be constant
in the short-run, the relative level of government oil stocks (RGS) can be obtained
by simply removing the trend component.

Ye et al. (2002, 2005, 2007) develop three different models based on the oil
relative inventory level to forecast the WTI spot price. In their 2002 paper, the
authors build up a model on a monthly dataset for the period January 1992–
February 2001, where oil prices are explained in terms of the relative industrial oil
stocks level and of a variable describing an oil stock level lower than normal. Ye
et al. (2005) present a basic monthly model of WTI spot prices which uses, as
explanatory variables, three lags of the relative industrial oil stock level, the lagged
dependent variable, a set of dummies accounting for the terrorist attack of 11
September 2001 (D01) and a “leverage” (i.e. step) dummy equal to one from 1999
onwards (S99) and zero before 1999, aimed at picking a structural change of the

164 A. Bastianin et al.



OPEC behaviour in the oil market.6 The authors compare this specification with: (i)
an autoregressive model which includes AR(1) and AR(12) terms and dummies
D01 and S99; (ii) a structural model where the oil spot price is a function of the
1-month lag of the industrial oil inventories, the deviation of industrial oil stocks
from the previous year’s level, the 1-month lag of the oil spot price, as well as
the dummy variables D01 and S99. Each model is estimated over the period
1992–2003. The basic model outperforms the other two specifications: in particular,
the time series model is unable to capture oil price variability. The performance of
each model is evaluated by calculating out-of-sample forecasts for the period
2000–2003. The forecasting accuracy of the two structural models depends on the
presence of oil price troughs and peaks within the sample period. When considering
3-month-ahead forecasts, the basic model exhibits a higher forecasting performance
in presence of oil price peaks, while the second structural specification outperforms
the basic model in presence of oil price troughs. On the basis of this last evidence,
Ye et al. (2007), using the same dataset, take into account the asymmetric trans-
mission of oil stock changes to oil prices. The authors define a low (LIS) and a high
(HIS) relative industrial oil stock level as follows:

LISt ¼ RISt þ rIS if RISt\� rIS
LISt ¼ 0 otherwise

�

HISt ¼ RISt � rIS if RISt\rIS
HISt ¼ 0 otherwise

� ð4Þ

where rIS indicates the standard deviation of the industrial oil stock level.
The estimated model is:

St ¼ a0 þ a1St�1 þ
X5

j¼0

wjD01jt þ kS99tþ
Xk

i¼0

biRISt�i þ
Xk

i¼0

ciLISt�i þ diLIS
2
t�i

� �

þ
Xk

i¼0

/iHISt�i þ uiHIS
2
t�i

� �þ et ð5Þ

which shows a more accurate forecasting performance than the linear specification
proposed by Ye et al. (2005).

6 The oil price increases, characterizing the 90s, came to a rapid end in 1997 and 1998 when the
impact of the economic crisis in Asia was either ignored or severely underestimated by OPEC who
increased its quota by 10 % January 1, 1998. The combination of lower consumption and higher
OPEC production sent prices into a downward spiral. In response, OPEC cut quotas by 1.25
million b/d in April and another 1.335 million in July. Price continued down through December
1998. Prices began to recover in early 1999 and OPEC reduced production another 1.719 million
barrels in April. Not all of the quotas were observed but between early 1998 and the middle of
1999 OPEC production dropped by about 3 million barrels per day and was sufficient to move
prices above $25 per barrel.
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Following Ye et al. (2002), Merino and Ortiz (2005) specify an ECM with the
percentage of relative industrial oil stocks and “speculation” (defined as the log-run
positions held by non-commercials of oil, gasoline and heating oil in the NYMEX
futures market) as explanatory variables. Evidence from January 1992 to June 2004
demonstrates that speculation can significantly improve the inventory model pro-
posed by Ye et al., especially in the last part of the sample.

Zamani (2004) proposes a forecasting model based on a quarterly dataset for the
period 1988–2004 and specifies an ECM with the following independent variables:
OPEC quota, OPEC overproduction, RIS, RGS, non-OECD oil demand and a
dummy for the last two quarters of 1990, which accounts for the Iraq war. The
accuracy of the in-sample dynamic forecasts is indicative of the model’s capability
of capturing the oil price evolution.

In the pure time series framework, two models, which are particularly useful for
forecasting oil prices in the long-run, are proposed by Pindyck (1999) and Rad-
chenko (2005). The data used by the authors cover the period 1870–1996 and refer
to nominal oil prices deflated by wholesale prices expressed in US dollars (base
year is 1967). Pindyck (1999) specifies the following model:

St ¼ qSt�1 þ ðb1 þ /1tÞ þ ðb2 þ /2tÞt þ b3t
2 þ et

/1t ¼ a1/1;t�1 þ t1t

/2t ¼ a2/2;t�1 þ t2t

8
><

>:
ð6Þ

where /1tand /2t are unobservable state variables. He estimates the model with a
Kalman filter and compares its forecasting ability with the following specification:

St ¼ qSt�1 þ b1 þ b2t þ b3t
2 þ et ð7Þ

on the full dataset and three sub-samples, namely 1870–1970, 1970–1980 and
1870–1981. Model (6) offers a better explanation of the fluctuations of oil prices,
while specification (7) produces more accurate forecasts.

Radchenko (2005) extends Pindyck’s model, allowing the error terms to follow
an autoregressive process:

St ¼ qSt�1 þ b1 þ /1t þ /2tt þ et
/1t ¼ a1/1;t�1 þ t1t

/2t ¼ a2/2;t�1 þ t2t

et ¼ uet�1 þ ut

8
>>>><

>>>>:

ð8Þ

The forecasting horizons are 1986–2011, 1981–2011, 1976–2011 and 1971–
2011. Overall, the empirical findings confirm Pindyck’s results, although the model
is unable to account for OPEC behaviour, leading to unreasonable price declines.
Nevertheless, the author suggests that forecasting results can be improved
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significantly by combining specification (8) with a random walk and an autore-
gressive model, which can be considered a proxy for future OPEC behaviour.

3 Data and Methods

3.1 Data

We have constructed four different datasets, with the following frequencies: daily,
weekly, monthly and quarterly. Prices refer to WTI crude oil spot price (St) and
WTI crude oil futures prices contracts with 1-, 2-, 3- and 4-month maturity
(Ft,1 − Ft,4), as reported by EIA. Weekly, monthly and quarterly data have been
obtained by aggregating daily observations with simple arithmetic means, taking
into account that the futures contract rolls over on the third business day prior to the
25th calendar day of the month preceding the delivery month. The sample covers
the period 2 January 1986–31 December 2005 (see Fig. 1).

Due to the limited availability of structural variables at high frequencies, the
daily and weekly datasets include observations on the WTI prices only. Therefore,
we have concentrated our analysis on financial and time series models at daily and
weekly frequencies, whereas we have estimated the structural specifications using
monthly and quarterly data.

The monthly dataset includes observations over the period January 1988–August
2005 for the following variables: OECD industrial crude oil stocks (RIS); oil
demand in the OECD countries (OD); the world crude oil production (WP); the
commodity price index (PPI), with June 1982 as basis. All variables are expressed
in million barrels per day (mbd) and are obtained from EIA, with the single
exception of PPI, which is from the Bureau of Labor Statistics.

The quarterly data range from the first quarter of 1993 to the third quarter of
2005 and refer to the following variables: total oil demand, computed (TOTD) as
the sum of the OECD (OOD) and non-OECD (NOOD) oil demand, RIS, and the
OPEC (OP) crude oil production.

Moreover, both the monthly and quarterly dataset include a variable labelled as
NCLP, that is a measure of long position held by non-commercial derivative
traders. Commercial and non-commercial are the labels currently used by the U.S.
Commodity Futures Trading Commission (CFTC) to categorize traders. Commer-
cial traders (commonly called hedgers) are futures market participants whose line of
business is in the related cash market, while non-commercial traders (commonly
called speculators) are participants whose main line of business is unrelated to the
cash market. The complete list of the variables employed in the empirical analysis is
summarized in Table 1.
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3.2 Models

We have evaluated the forecasting performance of different econometric models
available in the existing literature, which can be subsumed under the two main
classes described in Sect. 2, that of financial and that of structural models. We also
propose a new class of models which combine the relevant aspects of financial and
structural models (i.e. mixed models), and are based on the assumption that the
interaction between financial and macroeconomic variables can improve the
accuracy of oil price forecasts. Financial, structural and mixed models are con-
fronted with pure time series specifications. As already noted, due to data con-
straints, structural and mixed forecast are produced only with monthly and quarterly
data.

Irrespective of the sampling frequency of the data, all variables, with the only
exception of RIS, have been transformed into logarithms. We denote the logarithm
of a variable with lower-case letters (i.e. xt = log Xt). Moreover, we use Δ to indicate
the difference operator (i.e. Δkxt = xt − xt−k).

Table 1 Complete list of variables used in the empirical analysis

Variable Sample Frequency Source Acronym

WTI spot price 2/1/1986–31/12/2005 D, W, M,
Q

EIA S

WTI futures price
contract i = 1, …, 4

2/1/1986–31/12/2005 D, W, M,
Q

EIA Fi

Non-commercial long
positions

3/1995–8/2005
Q1/1995–Q42005

M, Q CFTC NCLP

OECD oil consumption 1/1988–8/2005 M EIA OD

OECD industrial oil
stocks

1/1988–8/2005
Q1/1993–Q3/2005

M, Q IEA RIS

World oil production 1/1988–8/2005 M EIA WP

Commodity price index 1/1988–8/2005 M BLS PPI

OECD oil demand Q1/1993–Q3/2005 Q IEA OOD

Non-OECD countries
oil demand

Q1/1993–Q3/2005 Q IEA NOOD

Total oil demand Q1/1993–Q3/2005 Q Computed as:
OOD + NOOD

TOTD

OPEC oil production Q1/1993–Q3/2005 Q EIA OP

Notes D daily frequency; W weekly frequency; M monthly frequency; Q quarterly frequency;
Qi ith quarter, i = 1, 2, 3, 4; EIA Energy Information Administration; CFTC U.S. Commodity
Futures Commission; BLS Bureau of Labor Statistics; IEA International Energy Agency
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3.2.1 Time Series Models

When evaluating a set of competing forecasts it is important to define a benchmark
model; in the case of the price of oil the Random Walk (RW) represents a natural
choice:

st ¼ st�1 þ et ð9Þ

where et is a white noise error. The RW model is also known as “no-change
forecast”, since it is assumed that the best predictor for the oil price tomorrow is the
oil price today.

The second time series model we consider is also a RW, but in this case we add a
drift term (RWD):

st ¼ dþ st�1 þ et ð10Þ

The strength of these models, that explicitly impose a unit root behaviour for st,
is their simplicity in both the estimation and forecasting stages. Actually, while the
RW model does not need to be estimated, the RWD requires just to compute the
OLS estimate of the sample average of Δst. Finally, we note that the usefulness of
random walk models as benchmarks stems from the fact that they often out-perform
more complex alternatives (Zeng and Swanson 1998).

3.2.2 Financial Models

In Sect. 3 we have pointed out that, irrespective of the frequency considered, the
WTI spot price and the four WTI futures prices involved in the empirical analysis
are I 1ð Þ.7 Moreover, the WTI spot price and each WTI futures price are cointe-
grated, that is there exists a stationary, long-run equilibrium relationship between
the WTI spot price and the WTI futures price at different maturities. Interestingly,
these statistical findings can be explained by standard economic theory and used to
build a forecasting models for the spot price of oil. In particular, the cost-of-carry
model posits that the futures price of storable commodities, such as crude oil,
depends on the spot price as well as on the cost of holding the commodity until the
delivery date. This cost, known as the cost-of-carry, includes both the storage and
the opportunity costs of awaiting future delivery (see Pindyck 2001, for a survey).
Assuming that investors can trade simultaneously in the spot and futures markets,
we can write the (log) cost-of-carry model as:

ft;i � st ¼ dt þ Qt ð11Þ

7 The results of the unit root tests, which are available from the authors upon request, are omitted
to save space.
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where the term on the left-hand side is knows as the “basis”, dt is the (log) cost-of-
carry and Qt is an adjustment term accounting for the marking-to-market feature of
futures markets. As shown by Brenner and Kroner (1995), if we are willing to
assume that the log-spot price follows a random walk with drift and that investors
are rational, we can use Eq. (11) to derive the set of financial models:

st ¼ aþ bft;i þ et ð12Þ

where α subsumes the terms on the right-hand side of Eq. (12) and εt is an
uncorrelated error term. Notice that we can derive a joint test of hypotheses; in fact
testing if (α β)′ = (0 1)′ is both a test of the optimality of ft,i as a predictor for st and a
test of EMH (i.e. if new information is immediately incorporated into spot prices,
then, on average, the futures price should be equal to the spot price).

These considerations form the basis for deriving the operational versions of
financial models which are used to produce a second set of forecasts. All these
models exploit the cointegrating relation between spot and futures prices. We
consider four bivariate Vector Error Correction Models (VECM), denoted as
FUT1–FUT4, which exploit the information content of futures contracts with dif-
ferent maturities:

Dst ¼ b0i þ b1iDst�1 þ b2iDft�1;i þ csi st�1 � b0i � b1ift�1;i�b2it
� � þ et;i ð13Þ

Dft;i ¼ a0i þ a1iDft�1;I þ a2Dst�1 þ cfi st�1 � b0i � b1ift�1;i�b2it
� � þ ut;i ð14Þ

for i = 1, …, 4.
The fifth financial model is a multivariate VECM and is denoted as FUT(1,4):

Dst ¼ b0 þ b1Dst�1 þ R4
i¼1b2iDft�1;i þ R4

i¼1cs;i st�1 � b0i � ft�1;i�b2it
� � þ et;i

ð15Þ

Dft;i ¼ a0i þ R4
i¼1a1iDft�1;i þ a2;iDst�1 þ R4

i¼1cfi st�1 � b0i � ft�1;i�b2it
� � þ ut;i

ð16Þ

for i = 1, …, 4.
There are two main differences between this specification and models FUT1–

FUT4. First, FUT(1,4) jointly models the relation between the spot price and the
term structure of futures. Second, we impose restrictions on the cointegrating
parameters in order to treat futures as unbiased predictors of the spot price. Finally,
we also consider a sixth financial model, namely AVG(1,4), which uses the sample
average of futures prices �ft ¼ 1=4ð ÞR4

i¼1ft;i. As in model (15)-(16), the intuition for
taking the simple average is to exploit the information content of the term structure

170 A. Bastianin et al.



of future prices. The model can be written as models FUT1–FUT4, with �ft in place
of ft,i.

The lag order of all models has been selected according to well established
information criteria, as well as a set of Lagrange Multiplier tests for residuals
autocorrelation. Estimation and inference of VECMs is carried out following the
Johansen’s (1995) approach to vector cointegration.8

3.2.3 Structural and Mixed Models

Structural and mixed models have been estimated only for monthly and quarterly
frequencies, due to the lack of data on the structural variables at higher frequencies.

For monthly data, we propose two different specifications. In the basic mixed
model (MIX) the WTI spot price is regressed on the non-commercial long positions
(nclp), OPEC consumption (od), the relative inventory industrial level (RIS), a step
dummy for 1999 (S99), which accounts for a structural change of the OPEC’s
behaviour in the international oil market, and the world oil production (wp):

st ¼ aþ bnlcpt þ codt þ dRISt þ kS99t þ /wpt þ et ð17Þ

The structural specification (STR) considers as explanatory variables the relative
oil inventory level (RIS), the commodity price index (ppi), the OECD oil demand
(od), the step dummy S99 and a set of dummy variables capturing the effects of 11
September 2001 (D01):

st ¼ aþ bRISt þ dppit þ uodt þ kS99t þ cD01t þ et ð18Þ

On quarterly data we estimate the following two different types of models:

st ¼ aþ bRISt þ ctotdt þ dnclpt þ et ð19Þ

st ¼ aþ bRISt þ ctotdt þ dopt þ et ð20Þ

where totdt denotes oil demand and opt is OPEC production. Specification (19) is a
mixed model, model (20) is purely structural.

Although oil demand might be naturally thought as endogenous when used as
explanatory variable for oil price, in our case endogeneity of oil demand is not a
issue, for the previous models are estimated in VECM form. Moreover, it is worth
pointing out that for monthly, as well as for quarterly, data seasonality in oil
demand and industrial oil stocks has been removed by regressing oil demand and
industrial oil stocks on a set of monthly dummies.

8 The estimation results for all models, which have been omitted to save space, are available from
the authors upon request.
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3.3 Forecast Evaluation

The estimation period for time series and financial models runs from January 1986
up to December 2003, while the interval from January 2004 to December 2005 is
used for forecast evaluation. Structural and mixed models have been estimated on
the sample January 1993–December 2003, and monthly (quarterly) forecasts have
been produced for the period January (first quarter, Q1) 2004–August (fourth
quarter, Q4) 2005.

All models have been selected and estimated once on the estimation sample;
then one-step ahead forecasts have been produced by keeping the estimated
parameters fixed.

The number of observations used to evaluate the forecasting performance of
different models is determined by the sampling frequency of the data: for daily,
weekly, monthly and quarterly the number of predictions is 329, 123, 20 and 8,
respectively.

Before discussing our forecast evaluation framework, it is worth introducing
some notation. We use hi,t to denote forecast from model i, the corresponding
forecast error is ui,t and Li,t(ui,t) is a loss function. If not needed, we drop both
model and time subscripts.

Our forecast evaluation strategy relies on the family of flexible loss functions put
forth by Elliott et al. (2005):

Lðu; q;/Þ ¼ ½/þ ð1� 2/ÞI u\ 0ð Þ� uj jq ð21Þ

where I(.) is the indicator function. The shape of the loss function is determined by
two parameters: ρ > 0 and 0 < ϕ < 1; the loss is asymmetric whenever ϕ ≠ 0.5. More
precisely, over-forecasting is costlier than under-forecasting for ϕ < 0.5; on the
contrary, when ϕ > 0.5 positive forecast errors (under-prediction) are more heavily
weighted than negative forecast errors (over-prediction). As shown in Fig. 2, special
cases of the loss include: the quad–quad loss for ρ = 2 and the lin–lin loss for ρ = 1.
Moreover, we get the mean absolute error (MAE) loss for ρ = 1 and ϕ = 0.5 and the
mean square error (MSE) loss for ρ = 2 and ϕ = 0.5.

When evaluating forecasts from different models we will focus on quaq–quad
losses (ρ = 2) with three different values for the asymmetry parameter ϕ = (0.2, 0.5,
0.8).

The values chosen for the parameters of the loss function allow for a greater
flexibility than the traditional model-ranking approach based on symmetric losses,
such as the MSE. There are several reasons for considering a flexible loss function.
First, given that the shape of the loss function often influences the ranking of
models, an asymmetric flexible loss function allows to evaluate forecasts taking into
account the degree of aversion of the decision maker with respect to under- and
over-prediction. Second, in order to consistently evaluate the prediction ability of
models, forecasts producers and users should have the same loss function. On the
contrary, when the loss function of the forecaster does not coincide with that of the
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user, the optimality of the forecast can be judged only with respect to the producer’s
loss function. Therefore, unless the user knows the form of the forecaster’s loss
function, the evaluation of forecast optimality implies also a test of the functional
form of the loss function (see Elliott et al. 2005, 2008). Third, there is evidence that
loss functions of some decision makers are asymmetric (Elliott et al. 2005, 2008;
Patton and Timmermann 2007). For instance, Auffhammer (2007) estimates the
asymmetry parameter of the flexible loss function using the annual forecasts of the
United States Energy Information Administration. In the case of the world price of
oil, for both the lin–lin and quad–quad losses, the asymmetry parameter, ϕ, is very
close one, suggesting that over-predictions are considered much less costly than
under-predictions.

In this study, forecasts evaluation goes one step beyond that of a simple model
ranking. As a matter of fact, in order to compare the forecast performance of each
specification (at any sampling frequency and for any shape of the loss function), we
run the test for equal predictive ability proposed by Diebold and Mariano (1995).
The test statistic is based on the loss differential, diRW,t = Li,t − LRW,t, where the
subscript attached to the second loss function indicates that the i-th model is
evaluated against the random walk (RW). Under the null hypothesis, H0: E(diRW),
the Diebold-Mariano test statistic is asymptotically Gaussian. Given that the
number of available forecasts produced by our models is, in at least two cases,
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Fig. 2 Generalized loss function.
Notes The generalized loss function refers to Elliott et al. (2005); Forecasts are shown on the
horizontal axis; The actual value is equal to 10; Over-prediction, u < 0, (under-prediction, u > 0)
occurs to the right (left) of the actual value; The graph shows four different loss functions: the
mean absolute error (MAE) loss for ρ = 1 and ϕ = 0.5 (circles), the mean squared error (MSE) loss
for ρ = 2 and ϕ = 0.5 (squares), the asymmetric lin–lin (piecewise linear) loss for ρ = 1 and ϕ = 0.7
(triangles), and the asymmetric quad–quad loss for ρ = 2 and ϕ = 0.3 (stars); The function is
defined for ρ > 0 and 0 < ϕ < 1; Over-prediction is costlier than under-prediction when ϕ < 0.5
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insufficient in order to guarantee the validity of asymptotic results, we implement
the Diebold and Mariano test corrected for small samples, where the appropriate
p-values are computed using the moving block bootstrap of Künsch (1989).9

4 Empirical Results

We start the evaluation of forecasts with an heuristic model comparison based on
the Approximate Bayesian Model Averaging (ABMA). ABMA is a method to
combine forecasts that delivers a set of weights that are functions of the Schwarz
Information Criterion (see Garratt et al. 2003).

Results are shown in Fig. 3. Irrespective of the sampling frequency of the data,
the largest ABMA weights are always associated with models RW and RWD.
While this finding is expected, given the parsimony of RW and RWD, nonetheless
it is interesting to notice that, at daily and weekly sampling frequencies, ABMA
would be essentially equivalent to assign equal weights to each model. Focusing on
models for monthly and quarterly data (and keeping in mind the small size of the
forecasting sample), we can confirm some of the previous results. In particular, the
most heavily weighted models are, once again, RW (first), RWD (second) and AVG
(1,4) (third), while the lowest (approximate) posterior probability is assigned to
FUT(1,4). The success of the AVG(1,4) model is due to its ability to summarize the
whole term structure of futures with two equations only. On the contrary, the
multivariate FUT(1,4) model involves five equations and some coefficient restric-
tions that might not be supported by the data in the forecasting sample. As for the
MIX and STR models, they appear on the bottom end of this ranking, with the sum
of their weights not larger than that associated to the third best model, which in turn
belongs to the financial class. In summary, our empirical results do not suggest a
single winning option, however they clearly indicate the presence of a hierarchical
order among the different classes of models, which can be summarized as: time
series (first), financial (second), mixed (third), structural (fourth).

There are many ways to test for forecast optimality. One simple approach is to
analyze the properties of forecast errors. In particular, it is well known that forecast
errors from optimal forecasts should have zero mean. If forecast errors follow a
Gaussianwhite noise process, as it should be for one-step ahead errors, then a standard
t-test is the obvious diagnostic tool. However, due to the limited number of obser-
vations,we implement afinite-sample corrected t-test by relying on bootstrap standard
errors and p-values obtained with the moving block bootstrap of Künsch (1989).
Results are shown in Table 2, where the statistic OUR, which measures the incidence
of over- and under-forecasts (i.e. an entry larger than unity suggests that the i-th model
producesmore negative forecast errors than positive forecast errors), is also presented.

9 Details on this procedure and a small Monte Carlo study of its performance are available from
the authors upon request.
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None of the models for daily data presents a statistically significant bias. As for
weekly forecasts, only the RW and FUT(1,4) models show a positive and statis-
tically significant bias. Interestingly, for data sampled at weekly frequency all
models produce more under-forecasts than over-forecasts; this result holds also for
models that at daily frequency present a value of OUR > 1.

At monthly and quarterly frequency, OUR is always below unity, suggesting
that all models tend to over-forecast. However, in both cases the class of financial
models is the only producing unbiased forecasts and the one with OUR closer to
unity (at least at monthly frequency). This finding can be explained by referring to
the cost-of-carry model and its relationship with EMH. Comparing the size of
biases at monthly frequency, we can compile the following model ranking: financial
(first), structural (second), time series (third), mixed (fourth).

Figure 4 shows the rankings and the magnitude of the flexible loss functions
associated to different models. In panel (a) the MSE ranking is reported. The set of
points with the label “overall” on the x-axis represent the ranking of models
obtained by summing the loss function over all forecast horizon. First, we can
notice that the loss differential across models are not very large in magnitude,
suggesting that it will be very hard to identify a best option. Second, when the
performance of models across sampling frequencies is compared, we can see that
the magnitude of the losses increases. Third, in the majority of cases bivariate

Fig. 3 Ranking of models using ABMA weights. Notes Models RW and RWD are described in
Sect. 3.2.1 (Eqs. (9) and (10)); Models FUT1—FUT4 are described in Sect. 3.2.2 (Eqs. (13) and
(14)); Models FUT(1,4) and AVG(1,4) are described in Sect. 3.2.2 (Eqs. (15) and (16)); Models
MIX and STR are described in Sect. 3.2.3 (Eqs. (17—20))
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financial models make in the first positions. The performance of structural and
mixed model changes according to the sampling frequency of the data.

When the loss function becomes asymmetric (see panels (b) and (c)), the only
models that have a good and consistent global performance are, once again, those
belonging to the financial class. They are outperformed by time series models only
when over-forecasting is costlier than under-forecasting. In this case there are

Table 2 Bias of forecast errors and ratio of over- to under-predictions

Daily Weekly Monthly Quarterly

Bias Over/
Under

Bias Over/
Under

Bias Over/
Under

Bias Over/
Under

RW 0.0526 0.8156 0.2852 0.6400 1.5572 0.5385 3.7256 0.1429

(0.4259) (0.0935) (0.0510) (0.0006)

RWD 0.0448 0.8380 0.2631 0.6400 1.4313 0.6667 3.2794 0.3333

(0.5049) (0.1214) (0.0723) (0.0043)

FUT1 −0.0549 1.0309 0.4225 0.6622 0.6692 0.8182 2.0701 0.3333

(1.0000) (0.0437) (0.2939) (0.0835)

FUT2 −0.2264 1.3500 0.1667 0.6849 0.5635 0.8182 2.0883 0.3333

(1.0000) (0.4290) (0.4049) (0.0687)

FUT3 −0.2132 1.3333 0.0451 0.7083 0.3434 0.8182 1.8374 0.3333

(1.0000) (0.8311) (0.6182) (0.0690)

FUT4 −0.2057 1.3333 0.0230 0.7571 0.2068 0.8182 1.5554 0.3333

(1.0000) (0.9154) (0.7581) (0.1230)

FUT
(1,4)

−0.0412 1.0061 0.4469 0.5570 0.5353 0.8182 −0.1200 0.3333

(1.0000) (0.0318) (0.4376) (1.0000)

AVG
(1,4)

−0.2775 1.4191 −0.0183 0.7083 0.3776 0.8182 1.7585 0.3333

(1.0000) (1.0000) (0.5783) (0.0778)

MIX 2.4991 0.5385 2.8809 0.1429

(0.0030) (0.0407)

STR 1.0648 0.6667 3.4798 0.1429

(0.0728) (0.0014)

Notes Even columns from 2 to 8 report the bias of the forecast errors; Bootstrap p-values in round
brackets denote the probability of accepting the null hypothesis of a forecast bias equal to zero;
Bootstrap p-values have been calculated on 9,999 moving block bootstrap samples; The length of
blocks, b, is set according to the rule b = floor(4(H/100)2/9 ); Odds columns from 3 to 9 show the
relative occurrence of negative and positive forecast errors; An entry lower than one indicates that
there are more positive forecast errors than negative forecast errors and that the model tends to
under-forecast the spot price; An entry greater than one suggests that the model tends to over-
forecast the spot price
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Fig. 4 Ranking of models
using the generalized loss
function. Notes See Notes of
Fig. 3; Panel a reports the
ranking based on MSE; Panel
b reports the ranking based on
the asymmetric loss function,
under the assumption that
over-forecasting is costlier;
Panel c reports the ranking
based on the asymmetric loss
function, under the
assumption that under-
forecasting is costlier
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interesting exceptions: the mixed model applied to monthly data delivers the lowest
loss, while FUT2 is the best option in the case of quarterly data.

In summary, the ranking of models seems to suggest that, irrespective of the
shape of the loss function, the class of financial models is to be preferred to time
series models. Both financial and time series models are, in turn, better than mixed
and structural models.

Finally, we use the Diebold and Mariano test to evaluate if the loss differentials
of RWD, financial, structural and mixed models are not statistically significant
when the RW model is used as a benchmark. Results reported in Table 3 are not
conclusive, since the loss differential seems to be statistically insignificant in the
large majority of cases. Although the RW model is not statistically outperformed by
any of the alternative models, the empirical findings seem to suggest that theoret-
ically well-grounded financial models are valid instruments for producing accurate
forecasts of the WTI spot price.

5 Conclusions

In this paper, we have tested and systematically evaluated the ability of several
alternative econometric specifications proposed in the literature to capture the
dynamics of oil prices. We have concentrated our investigation on single- as well as
multiple-equation, linear reduced forms, since models of this type are the most
widely used in the academic literature and by the practitioners.

We have also analysed the effects of different data frequencies (daily, weekly,
monthly and quarterly) on the coefficient estimates and forecasts obtained using
each selected econometric specification. We have evaluated the forecasting per-
formance of each selected model using static forecasts, as well as different measures
of forecast errors.

Finally, we have proposed a new class of models, namely “mixed” models,
which combine the relevant aspects of the financial and structural specifications
proposed in the literature.

The empirical findings of this study can be summarized as follows. According to
an heuristic model comparison based on the ABMA, a hierarchical order among the
different classes of models can be found: time series (first), financial (second), mixed
(third), structural (fourth). The finite-sample corrected t-test for the null hypothesis
of zero-mean forecast errors, and the statistic OUR, show that none of the models for
daily data presents a statistically significant bias. For data sampled at weekly fre-
quency all models produce more under-forecasts than over-forecasts. At monthly
and quarterly frequency, OUR is always below unity, suggesting that all models tend
to over-forecast. However, in both cases the class of financial models is the only
producing unbiased forecasts and the one with OUR closer to unity (at least at
monthly frequency). Comparing the size of biases at monthly frequency, the fol-
lowing model ranking emerges: financial (first), structural (second), time series
(third), mixed (fourth). The ranking of models seems to suggest that, irrespective of
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the shape of the loss function, the class of financial models is to be preferred to time
series models. Both financial and time series models are, in turn, better than mixed
and structural models. The Diebold and Mariano test is inconclusive, since the loss
differentials seem to be statistically insignificant in the large majority of cases.
Although the random walk model is not statistically outperformed by any of the
alternative models, the empirical findings seem to suggest that theoretically well-
grounded financial models are valid instruments for producing accurate forecasts of
the WTI spot price.
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Part III
Electricity Markets



Commodity Price Interaction: CO2
Allowances, Fuel Sources and Electricity

Mara Madaleno, Carlos Pinho and Cláudia Ribeiro

Abstract This work anlyses the relationship between the returns for carbon,
electricity and fossil fuel price (coal, oil and natural gas), focusing on the impacts of
emissions trading via a Vector Error Autoregressive Correction Model (VECM) for
both German and French markets. Results show that the effect of carbon depends on
the energy mix of the country under analysis but that it is not the only factor. Less
carbon coercion takes place in the European Energy Exchange (EEX) and inno-
vations in carbon are not strongly reflected in electricity prices. Also, market power
affects the correct transfer of prices, thus limiting cost increases.

Keywords CO2 emission allowance trading � Environmental management � Spot
prices � European union � Energy mix impact

1 Introduction

The European Union Emission Trading System (EU ETS) officially began on 1st
January 2005 following the 2003/87/EC directive. It is one of the largest multi-
national emission trading schemes in the world and a major pillar of the EU climate
policy created in the ambit of the Kyoto Protocol1 which aims to cut 1990 levels of
CO2 emissions by 8 %.
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1 Signatories of the Kyoto Protocol in 1997 decided to reduce greenhouse gases (namely CO2) by
limiting quantified emissions; Under the treaty, industrialized countries agreed to reduce their 1990
levels of greenhouse gas emissions by at least 5 % until 2012.
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The EU ETS sets a ceiling on emissions from the most energy-intensive industrial
sectors and introduced the emissions market. Large European CO2 emitting instal-
lations receive permits from their government to emit tonnes of CO2, and their
equivalent is traded on the spot and derivatives markets (mostly options and futures)
whenever targets are met at the scheduled time (Mansanet-Bataller et al. 2007).

The energy sector is clearly on the front line of climate change as it is
responsible for 60 % of global greenhouse gas emissions and much of the regional
and urban air pollution (World Energy Council 2010). Moreover, air quality is a
major concern in the urban environment as 50 % of the world’s population lives in a
city. Emission trading is a market-based scheme aimed at improving the environ-
ment and it allows parties to buy or sell both permits for emissions and credits for
reductions in the emission of certain pollutants (Dellink et al. 2010). Electricity
generation is the main polluting activity in the energy sector and it has been opened
up to competition due to the liberalisation of the electricity market in Europe.
Electricity is produced from various primary energy sources including nuclear, coal,
oil, gas and renewable energies. A country’s energy mix is determined by the
proportion of the different primary energy sources used in electricity generation. It
varies from one European country to another as a result of differences in energy
policies as well as geographical and geological features. Electricity prices are
therefore determined by the cost of fossil fuels, the impact of environmental poli-
cies, and also by climatic factors (Mohammadi 2009).

Carbon allowances are currently traded in electricity exchanges throughout
Europe and their price is a result of supply and demand (Benz and Trück 2009). In
general, CO2 production depends on a number of factors such as weather, fuel
prices and economic growth (Springer 2003; Mansanet-Bataller et al. 2007;
Alberola et al. 2008; Chevallier 2012; Creti et al. 2012).

In this chapter, we intend to extend previous analyses of electricity prices, fuel
prices and carbon interactions in at least five ways: (1) our period of analysis is
from 2009 to 2012 (Phase II); (2) we broaden previous works to the German and
French markets. These countries were selected for the following reasons: the
German electricity market is one of the biggest by number of participants and
generation capacity, and has strong connections with the rest of the European
countries (Madaleno and Pinho 2011a, b); allowances have been traded since 2005
in both markets; the German market is completely open to competition, while the
French market is still characterised by monopolistic behaviours; both appear to
behave coherently (Silva and Soares 2008; Pinho and Madaleno 2011b); although
France and Germany are already geographically close to each other, they formed a
regional market in January 2010; (3) We include other fuel prices such as oil due to
the energy mix that distinguishes the markets under analysis, and we provide a
VECM model with five endogenous variables; (4) we give a clear answer on how
the EU ETS has affected the electricity generation sector by addressing countries’
heterogeneity (for both short and medium term interactions); (5) finally, we include
temperature dummies.

Empirical findings show that in the period under analysis, the European emission
allowances market failed to compel electricity producers to reduce their emissions
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and invest in cleaner technologies whose efficiency depends on the energy mix of
the country under analysis. Policies related to the coal industry have therefore a
marginal influence on electricity prices.

The remainder of the chapter is organised as follows. Section 2 presents the
functioning of the carbon market and its determinants, before showing the data used
and its statistical properties in Sect. 3. Section 4 provides the methodology,
empirical analysis, results, and policy recommendations, and Sect. 5 concludes.

2 How the Carbon Allowances Market Works and What
Affects It

The EU-ETS is the first large scale CO2 emission trading system in the world. It has
been organised in three phases with a pilot phase (Phase I) going from 2005 to 2007,2

Phase II going from 2008 to 2012 and Phase III of arrangement from 2013 until 2020.
The EU ETS is set to expire in 2020 if no other international climate agreement is
reached (Creti et al. 2012). Any company wishing to participate in the emission
allowances market must open an account in the registry of the country of origin,
where allocations are stipulated along with each company’s the purchases and sales.

The EU ETS covers more than 11,000 industrial installations in 25 countries;
each participating country proposes their National Allocation Plan (NAP) including
caps on greenhouse gas emissions for power plants and other sources, which must
subsequently be approved by the European Commission. The NAP of each member
state determines the total quantity of CO2 allowances granted per year for each
company and for a specific commitment period (each Phase3). Allowances are
allocated free of charge in the first stage.4 Thereafter, additional allowances must be
purchased directly from the market when required.

2 Considered the trial phase when administrative and regulatory bodies were put on-line.
3 During each of these Phases, allowances delivery is made on a yearly basis and follows a precise
calendar: on February 28 of year N, European operators receive their allocation for the
commitment year N; March 31 of year N is the deadline for the submission of the verified
emissions report during year N − 1, from each installation to the European Commission; April 30
of year N is the deadline for the restitution of quotas utilized by operators during year N − 1; May
15 of year N corresponds to the deadline of the official publication by the European Commission
of verified emissions for all installations covered by the EU ETS during year N − 1 (European
Commission reports).
4 This will be limited for Phase III (beginning in 2013), where allowances will not be issued
completely free of charge (Friends of the Earth 2010). The allocation of allowances will be made
primarily by auction, but until 2020, some allowances will continue to be allocated free of charge
to the industrial sector in particular to reduce the costs to facilities in areas considered to be
exposed to significant competition, especially from third countries. According to the DG Clima,
this decision establishes the rules, including benchmarks for emissions of greenhouse gas
emissions, but it is the responsibility of member states to calculate the number of allowances that
will be provided free of charge to these areas each year.
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The purpose of the EU ETS is primarily to reduce emissions by promoting low
carbon technologies and energy efficiency among CO2 emitting plants and to
establish a market price for allowances. European polluters will therefore be aware
of the environmental consequences of their polluting activities. As such, installa-
tions need to surrender as many allowances during this period as the amount of
carbon dioxide emitted during the reference year. The EU ETS is a cap-and-trade
scheme; the overall level of emissions is capped up to this limit, and installations
short (in excess) of allowances (emissions rights) with respect to their individual
allocation level may purchase (sell) allowances on the spot market in order to meet
their compliance requirement in the EU ETS (Alberola et al. 2008). Installations
that do not meet their target in Phase II must pay a penalty of 100 €/ton of CO2, up
from 40 €/ton of CO2 in Phase I.

At the start of Phase I, major emitters were allocated an initial amount of permits
and were free to trade them on the market. A similar new supply was given every
year to the same sources. However, the early environmental benefits were limited
because of concerns among member states of over-allocation (Ellerman et al. 2010)
and the implementation of banking restrictions between 2007 and 2008; as a result,
carbon spot and futures prices of maturity fell to zero levels in December 2007
(Alberola and Chevallier 2009). This first experience also highlighted the need for
reliable verified emissions data, harmonised monitoring and reporting rules, as well
as concentrated their attention on the first Phase, despite the fact that this was a
learning period which revealed the weaknesses of the scheme.

Academics had investigated carbon price patterns in 2005–2007 discussing both
their determinants (Alberola et al. 2008; Mansanet-Bataller et al. 2007) and sto-
chastic behavior to forecast trends (Paolella and Taschini 2008; Seifert et al. 2008).
Ferkingstad et al. (2011) study the dynamics of price information flow among
weekly Nordic and German electricity prices and oil, gas, coal, wind power in
Germany and Nordic water reservoir levels but did not take the price of allowances
into account. Creti et al. (2012) try to shed light on the determinants of carbon
futures prices in Phase II by testing whether energy prices and indicators of eco-
nomic activity still hold for this phase and evolve toward a stable long-run rela-
tionship; they used daily futures contracts from 2005 until 2010 in their
cointegration testing. These authors did not include weather variables arguing that
the literature thus far only shows that their impact on carbon prices is indirect and
captured by sudden shocks in energy demand.

Phase II brought more clarity. The audited figures for each installation were
disclosed publicly and installations that had initially received a substantial surplus
were subsequently given much less. Supply and demand of allowances was
adjusted through exchanges and over-the-counter transactions based on price levels
and institutional characteristics of the (Creti et al. 2012).

Economic theory teaches us that carbon price is a marginal cost and that carbon
permits have an opportunity cost equal to their market price. Thus, it is to be
expected that the price of carbon will be an additional increment to the short-term
fuel costs of power generation and must therefore be included in the price of
electricity. However, the aggregate effect of carbon prices will depend on the

188 M. Madaleno et al.



technology mix across the whole of the EU and firms’ pricing behaviors. Moreover,
electricity prices that reflect the cost of CO2 are needed to encourage investment in
clean generation, demand-side response and the adoption of efficient end-use
technologies. The increase of CO2 in the atmosphere caused by the rampant use of
fossil fuels has negative impacts on natural systems and is a main contributor to
climate change. Coal and oil should thus be replaced with renewable alternatives
which do not emit CO2. Accordingly, trading allowances for the emission of CO2

gives value to reducing emissions and has resulted in a market with an asset value
worth tens of billions of euros annually.

However, trading CO2 is different from more traditional commodities. First,
whereas producers in this market may hold emission allowances to reduce the costs
of adjusting production over time or to avoid stock outs, assets in financial markets
can be used for insurance, hedging and speculation. Second, the emissions of sellers
are expected to be lower than their allowance, so the unused allowances are bought
by those who emit more than their allocated amount. The carbon credit system
strives to reduce emissions by encouraging countries to honour their emission
quotas and offer incentives to stay below them (Prabhakant and Tiwari 2009;
Bhardwaj and Wadadekar 2010). Third, the value of a stock is based on the
expected profit of the firm that distributes the shares, while the price of emission
allowances is determined by the balance between supply and demand (Benz and
Trück 2009). Fourth, while the annual quantity of allocated emission allowances is
limited and specified by the EU-Directive for all trading periods, it is the firm that
decides whether to issue additional shares and thus fosters the stock’s liquidity.
Fifth, unlike other markets, emissions trading schemes create a commodity which
has one sole producer and supplier, i.e. the government is the only source of
allowances and emissions permits. Moreover, there are no apparent production and
storage costs. Finally, allowances have a limited validity.

Literature has found evidence that a change in carbon prices is closely linked to the
power price (Convery and Redmond 2007). Moreover, German wholesale power
prices were found to be closely related to European Union Allowances price change
(Zachmann and von Hirschhausen 2008). Also, previous authors analysed CO2 spot
price behaviour (Benz and Trück 2009; Paolella and Taschini 2008; Seifert et al.
2008; Daskalakis et al. 2009) and CO2 futures markets (Uhrig-Homburg andWagner
2006, 2008; Wei et al. 2008).

Through Vector Autoregressive (VAR) analysis, long-term and short-term
dynamics of electricity, gas and coal prices and the price of carbon permits were
studied in the Finnish market (Honkatukia et al. 2007). Similar structural approa-
ches were used to analyse the English electricity market, this time excluding the
price of coal and including temperature and dummies as exogenous variables (Bunn
and Fezzi 2007).

Previous authors using an autoregressive distributed lag model concluded that
other determinants of fossil fuel used in Swedish electricity generation probably
diminished the effects of the EU ETS (Widerberg and Wräke 2009). Reasons for the
less than 100 % pass-through of CO2 costs into firm and industry were attributed to
demand responses, market structure, and competition from non-fossil fuel
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generators (Sijm et al. 2006). Among other variables, prices of European Union
Allowances (EUA) are also influenced by coal and natural gas prices (Mansanet-
Bataller et al. 2007). Moreover, significant interactions are found between European
Union Allowances prices and input fuel prices (Bunn and Fezzi 2007). Our results
reveal that electricity prices have null short-term responses to CO2 price shocks,
although the response increases over time. This conclusion is the inverse of others
taken elsewhere (Fell 2008) using daily data for NordPool for 2005–2008 under a
VECM methodology although not using oil prices, but including reservoir levels.
For the US market and using VECM, Mohammadi (2009) concludes that there is
only a significant long-term relation between electricity and coal, and while the role
of oil prices is significant, that of natural gas is statistically weak.

The different results obtained in studies not only reflect distinct approaches but
also the fact that the countries surveyed have very diverse energy mixes. The
absence of a unanimous response to the problem of the effect of the EU ETS on the
price of electricity (Reinaud 2007) is therefore due mainly to the coexistence of
various electricity markets in Europe and the heterogeneity of energy mixes. Fur-
thermore, as these studies did not cover any more than the period 2005–2006, on
the demand side, carbon prices are impacted by energy prices because they reflect
the producing process of the utilities regulated by the EU ETS.5

3 Data and Statistical Properties

Electricity prices were obtained from the electricity stock exchanges of Powernext
(FR) for France, and European Energy Exchange (EEX) for Germany. We focus on
the French and German electricity markets where the major fuel sources are gas,
coal and oil (Ferkingstad et al. 2011). The German electricity data collected starts in
June 2000 and the French data in November 2001. CO2 only started to be traded
after the liberalisation of electricity markets, namely October 2005 in Germany and
April 2005 in France.

Weekly day-ahead (base load price—the day’s arithmetic 24 h average) elec-
tricity prices (in €/MWh) were obtained by means of the price on the last trading
day in the week. Due to data restrictions and the misbehaviour of carbon markets
until 2009 our period of analysis is from January 2, 2009 to July 6, 2012. Moreover,
Chevallier (2012) identifies three breakpoints in carbon spot series.6 Our results
would not necessarily say much about price information flow between the weekly
price levels if we chose the Sunday price, and using weekly average spot prices
might have induced additional correlation into the series or differenced price series.

5 For more details on the relationship between coal, energy prices and fuel switching behaviour,
institutional decisions and weather events between 2007 and 2009 see Chevallier (2012).
6 These were May 28, 2007; December 30, 2008; and February 11, 2009.
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Daily data can avoid additional complications induced by averaging but results
obtained when we performed this analysis proved to be less reliable.7

The carbon spot price of the respective stock exchange expressed in € per ton
was used; in other words, the Bluenext carbon spot European Union Allowances
price was used for France, and the EEX-EU CO2 emissions allowances price was
used for the German market. Furthermore, we collected data on exchange rates so
that all electricity prices and carbon were in the same denomination as other pri-
mary energy fuels used (gas, oil and coal), i.e. we converted all prices to US dollars
to control the impact of exchange rates. Monthly exchange rates were collected
from the “Bank of Portugal”8 covering the corresponding sample periods.

For crude oil, we use weekly spot prices of the London Brent Crude Oil Index,
one of Europe’s benchmarks for crude. Weekly spot prices set on Brent are
denominated in US dollars per barrel but transformed into Euros. Brent is a North
Sea deposit; as its oil is representative of the crudes produced in this region, it has
the best characteristics to match other energy variables traded in Continental Europe
(Chevallier 2012). For coal data, we take the Antwerp/Rotterdam/Amsterdam
(ARA) coal price which is denominated in US dollars per Gigajoule. Weekly prices
on natural gas are those reported in the Zeebrügge Hub where data is denominated
in €/MWh. We expect this market to be more important for electricity price for-
mation as it is closer to the German market (Ferkingstad et al. 2011) which is the
most liquid gas trading market in Europe. As argued by Chevallier (2012) this
market has a major influence on the price that consumers pay for their gas in Europe
and therefore constitutes a good proxy. Data descriptive statistics are presented in
Table 1. All time series have been log-transformed into returns.

As evidenced by the data, mean returns for all electricity spot markets are
positive. The Jarque-Bera statistic indicates that the distribution of returns for all
samples has fat tails and sharper peaks (kurtosis) than the normal distribution
(kurtosis being higher for natural gas and carbon prices). Skewness, which mea-
sures the degree of a distribution’s asymmetry, is also very different from zero, and
is negative for carbon, natural gas, oil and Powernext electricity returns. Results for
skewness and kurtosis are not shown here but are available on request.

Moreover, volatility is high for all markets and there are no significant differ-
ences between the average wholesale electricity returns in the two markets. Pow-
ernext relies heavily on nuclear power, followed by hydro, and given the results
obtained here we are able to confirm the finding that the mix of generation tech-
nology has an impact on the standard deviation of market prices (Wolak 1998).
Wolak (1998) finds that prices in markets dominated by fossil fuel or thermal
technology tend to be much more volatile than prices in markets dominated by
hydroelectric capacity. According to the standard deviation obtained, which we use

7 Results will be provided upon request.
8 http://www.bportugal.pt/pt-PT/Estatisticas/PublicacoesEstatisticas/BolEstatistico/Paginas/
BoletimEstatistico.aspx.
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as our volatility proxy, EEX presents higher volatility of both electricity prices and
allowances.

Volatility increases costs for emitters and they prefer stable and predictable
carbon prices. In the carbon markets, there are generally two types of risk that
participants may want to transfer: carbon price volatility and carbon default risk (the
risk that offset projects may not achieve some or all of their carbon reductions).
Both types of risk would be found in a system with a high proportion of offsets and
volatile carbon prices.

Since 2005, electricity prices have been affected by two major changes: an
increase in fossil fuel prices and natural gas in particular, and the introduction of
CO2 allowances, itself boosted by increasing gas prices. The two factors have
resulted in higher market prices—and costs—for energy intensive users. Figure 1
shows that electricity contract prices have varying volatilities; they are most volatile
than of all energy markets, whereas CO2 volatility is very similar among markets.
The price of coal rose sharply in 2010 and only decreased at the end of 2011.

As stated previously, CO2 emission allowances have a limited validity as they
expire after each commitment period. However, the decision to allow banking9

from the pilot phase (2005–2007) into the first Kyoto commitment period was left
to the individual EU member states (whereas Germany decided against allowing it,
France permitted it in the initial stage). An intertemporal ban in banking meant all
licences became invalid at the end of 2007 and environmental institutions had to

Fig. 1 Weekly price dynamics plots for electricity, gas, coal, carbon and oil

9 Banking occurs when the right to emit carbon can be saved for future use, i.e. we can use a 2007
allowance in 2008. On the other hand, borrowing means that current emissions are extended
against future abatement, i.e., we can borrow permits from future allocations for use in the current
period (using 2008 allowances in 2007). Both banking and borrowing were forbidden between
phase I and II.
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issue companies with new allowances. Therefore, Phase I spot prices for carbon
went down to zero by the end of Phase I due to banking restrictions implemented
between 2007 and 2008 (Alberola and Chevallier 2009). This induced an excessive
supply of allowances on the market which in turn led to a fall in the carbon price
initiating a convergence towards zero in January 2007. Moreover, two structural
breaks were also identified in the literature (Alberola et al. 2008) in 2005–2007 and
three have since been explored by Chevallier (2012).

The second year in Phase II of the EU ETS, 2009, started with a fall in European
Union Allowances prices; this followed the decline that had begun towards the end
of 2008 due to the widening of the financial crisis and it stoked fear among market
participants of a reoccurrence of the problems at the end of Phase I when allow-
ances were being sold to improve companies’ balance sheets (see European
Commission reports). As a result we excluded 2008 from our analysis.

Carbon and coal prices seem to follow opposite paths. The price dynamic is
consistent with the intuition that when the demand for carbon permits increases, the
coal price decreases. They will increase when the relative price of coal decreases
because a coal-fired power station is more carbon-intensive than a gas-fired station
However, there seems to be a downward trend in both from 2010 onwards with
some evident peaks with respect to coal.

The electricity markets under analysis differ in their underlying production
structure. The recommendations throughout “green markets” are showing some
evolution with respect to hydro and wind. Renewables are still not the main pro-
duction source for both countries. According to Eurostat data, Germany generated
10 % of its electricity from renewable sources in 2005 and France 10.98 %. In
2008, the figures rose to 14.63 and 14.07 % for Germany and France respectively,
followed by another increase for with in 2010 to 16.9 % compared with just
14.45 % for France. This demonstrates the huge effort being made in Germany.

At this stage it is interesting to notice the differences in the energy mix among
countries. For example, France has a large nuclear and hydro production (Pinho and
Madaleno 2011a). Of the EU-15 countries, France is expected to be a relative
winner in the EU emission trading due to its large proportion of nuclear energy10

(Pinho and Madaleno 2011a). The percentage of nuclear in EEX is also high, and is
followed by coal (see Table 2). Germany clearly switched from coal to natural gas
and wind, while France is still relying on nuclear. The German EEX market is the
largest market in Europe, dominated by coal (47 %), nuclear power (23 %), gas
(17 %), hydro and increasing wind power production (Ferkingstad et al. 2011).

Reducing the concentration in the electricity industry was another of the main
objectives of the EU Directives: “increasing competition to reduce market power”.
Table 3 presents the percentage share of the largest generator for the markets under
analysis between 1999 and 2010.

As demonstrated by the data, the French market has the highest level of gen-
erators concentration but the concentration in both markets was lower in 2010 than

10 We were unable to include nuclear, wind or even hydro production due to lack of available data .
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in 2000. Nevertheless, the high levels of concentration create scope for market
power and therefore they influence spot prices, which could induce environmental
costs being transferred erroneously to electricity prices (Pinho and Madaleno
2011a).

The correlation matrix between European Union Allowances price markets is
also studied for the estimation period. Results are presented in Table 4.

Table 4 shows that European Union Allowances markets have positive pairwise
correlations (except between carbon and all the other fuel sources in both markets);
although this implies interactions between electricity prices and fuel prices, they are
not so strong as initially expected. Higher correlations are observed between gas
and electricity, coal and oil, as well as between gas and oil.

Similar to Chevallier (2012) we also considered the broad European tempera-
tures index11 to be a suitable exogenous variable that drives energy and allowances
prices, and therefore included it as a dummy in our model. Weather conditions are
expected to affect the price path of carbon by influencing energy demand. In cold
winters, more heating is needed and this requires extra power extra power gener-
ation. On the other hand, hot summers lead to a greater consumption of air-con-
ditioning, also raising electricity production. However, the fuel used in response to

Table 2 Percentage of electricity production by fuel source in Germany and France

Germany France

Fuel source/year 1998 2008 1998 2008

Hard coal 27.56 19.56 6.22 4.24

Petroleum 1.15 1.35 2.28 1.02

Natural gas 9.76 11.91 0.97 3.80

Nuclear 29.03 23.30 75.92 76.29

Hydro 3.88 4.23 13.04 11.95

Wind 0.82 6.37 0.00 0.99

Figures are in percentages computed as: (type of fuel used to produce electricity/total gross
electricity generated) * 100. Total gross electricity generation (GWh) covers gross electricity
generation in all types of power plants. The gross electricity generation at plant level is defined as
the electricity measured at the outlet of the main transformers, i.e. it includes the consumption of
electricity in the plant auxiliaries and in transformers. The gross electricity generation in power
stations burning hard coal (GWh), in power stations burning natural gas (GWh), in nuclear power
plants (GWh) and in wind turbines (GWh) are measured as above Gross electricity generation in
power stations burning petroleum (GWh) products cover hydrocarbons like motor spirit, gas oil,
kerosene, etc. produced in oil refineries or in some rare cases obtained without refining
Hydroelectricity covers potential and kinetic energy of water converted into electricity in
hydroelectric plants (GWh), also expressed as gross generation. Data comes from http://epp.
eurostat.ec.europa.eu/portal/page/portal/statistics/search_database

11 See http://www.weatherindices.com/index. Moreover, due to data limitations and lack of
availability for the countries considered here we do not consider other potential weather events
such as wind.
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the demand for increased production is not always the lowest CO2 emitting source;
this means more CO2 allowances are required, which will be reflected in prices. The
national business-climate index used was computed by Metnext (the average daily
temperature of the regions that compose a country weighted by their population).
CDC Climate Research has extended this methodology by creating the European
temperatures index (expressed in degrees Celsius), which is equal to the average of
the national temperature indices for 18 European countries (including France and
Germany), weighted by the weight of each country in the total volume of distrib-
uted allowances. For our analysis we define two dummy variables: one to capture
the influence of cold temperatures and the other to capture the influence of hot
temperatures.12

4 Model and Empirical Results

The descriptive statistics provided above indicate that energy series and carbon
prices are non-stationary. This implies that any particular price measured over time
will not be tied to its historical mean. Moreover, electricity, carbon and fuel prices
are not expected to be independent from each other, whereas similar economic
forces are expected to influence each market.

In order to address stationarity, the Augmented Dickey-Fuller test (ADF) was
used (null hypothesis: non-stationarity of the tested time series), assuming a con-
stant, a constant and a trend and none, for all series (in logs and log first differences)
under analysis. The presence of a unit root for all the series after differencing one
time is rejected (except for natural gas assuming a constant and a trend). Overall,
the series are integrated of order one, I(1), or first-difference stationary, and we
conduct the model analysis in logarithmic first differences (returns).13

We also tested for cointegration using Engle and Granger (1987) cointegration
tests but do not present results in order to save space.14 Tests performed indicate the
existence of 1–2 cointegrating vectors depending on the market under analysis, and
the null hypothesis of no cointegration is rejected.

For the empirical estimations, we define yTt ¼ Logelec; Loggas; Logcoal; Logoil;
�

LogcarbonÞ, the vector of the log prices of electricity, gas, coal, oil and carbon
emission permits. Exogenous variables considered were the lagged values of
endogenous variables and the two dummies used for hot and cold extreme tem-
peratures; the Vector Autoregressive Model (VAR) lag order selection indicated

12 The dummy that captures the influence of cold temperatures equals one when the temperatures
index in a given month is −1.97 °C below decennial seasonal averages and that of the influence of
hot temperatures equals one when the temperatures index in a given month is 1.47 °C above
decennial seasonal averages.
13 Results are not provided here but are available on request.
14 We test for the number of cointegrating vectors using the trace test introduced in Johansen
(1992) and the Max-eigenvalue test.
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two lags for both markets selected by both LR (sequential modified Likelihood
Ratio test statistic) and AIC (Akaike information criteria).15

The vector autoregressive (VAR) model (Hamilton 1994) is a standard and
useful tool of econometrics and multivariate time series analysis. To explain the
model, consider that endogenous variables yt and exogenous variables xt are
observed random vectors depending on time t = 1, 2, … The main idea of this
model is that endogenous variables depend linearly on their p previous values and
also the current value of the exogenous variables. For now, we consider a VAR
with p-lags (when p is long enough to ensure absence of autocorrelation):

yt ¼ vþ A1yt�1 þ A2yt�2 þ � � � þ Apyt�p þ dxt þ et ð4:1Þ

where yt is a n × 1 vector of variables, v is a n × 1 vector of parameters, A1, … ,Ap

are n × n matrices of parameters, δ is a coefficients matrix of size n × d and εt is a
n × 1 vector of disturbances, with mean 0, covariance matrix ∑, and i.i.d. is normal
over time. In this case, n stands for the number of endogenous variables and d for
the number of exogenous variables (xt).

From the econometric literature, we know that any VAR(p) can be rewritten as a
Vector Error Correction Model (VECM) when the stability condition is not satis-
fied. In fact, all variables must have the same order of integration. If all variables are
stationary, I(0), we can easily use the VAR specification. If not, or if the variables
are non-stationary, I(k), k ≥ 1 we can do two things: If the variables are not
cointegrated, they must be differenced k times in order to obtain a VAR; but if the
variables are cointegrated, we may use a vector error correction model (VECM).

Here we define the VECM of order p as:

Dyt ¼ Pyt�1 þ C1Dyt�1 þ � � � þ Cp�1Dyt�pþ1 þ Uxt þ et t 2 Z ð4:2Þ

where yt is a n × 1 random vector, yt * CI(1) meaning yt sequence is a VAR(p)
process cointegrated of order 1; P;C1; . . .;Cp�1 are n × n fixed coefficient matrices
and εt is a n × 1 white noise Gaussian process. In the present setting, we have a
VECM with p = 2 for both Powernext and EEX. The Π matrix has a rank r� n and
P ¼ abT . The n × r, α, matrix is called the loading matrix. The r × n, β, matrix is
called the cointegration matrix. The columns of β, βi are such that b

T
i yt is stable, and

are cointegrating vectors. When we find the rank of cointegration for the VECM, yt,
we find the rank of Π, the number of cointegrating vectors βi (if more than one,
otherwise just one vector). Hence, βyt-1 can be regarded as an error correction
element, with α then being a speed of adjustment vector. Given that we have
defined yt as being the vector of endogenous containing the log prices, Δyt will be
the vector containing log first differences (or else, returns). δ is a coefficients matrix

15 Schwartz criteria was also used and given the difference of the selected lag structure and the
need to keep the VAR model parsimonious, we ran the v2 lag exclusion test.
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of size n × d associated with the d × 1 vector xt that represents the two temperature
dummies or exogenous variables. Notice that here n = 5 and d = 2.

Response of yj,t+s to a one-time impulse in yi,t is described by impulse-response
functions, with all the other variables held fixed. They can be used to produce the
time path of the dependent variables in the VAR to shocks from all the explanatory
variables. If the system of equations is stable, any shock should decline to zero,
whereas an unstable system would produce an explosive time path. In order to save
space we omit the presentation of the VECM estimates.

Figure 2 displays the impulse response functions for all series in the France
Powernext, namely the responses of each series to a shock in each series. The
horizontal axis represents the up to 9-week responses of all series caused by an
impulse (a one-time-only shock) in one of the series (column headers show the
impulses and row headers the responses). The responses are normalised so that they
can be compared with each other.

Each series response to its own shock shows to be positive, significant and
strong in the short term. All series responses to shocks in oil prices seem to be
positive, except for electricity in EEX (see Fig. 3), but they do not last across the
entire time horizon considered (9 weeks). For Powernext, electricity response to
carbon and gas appears to be positive in the short term but negative for coal. With
respect to oil shocks, electricity only responds negatively in the 2-week period.
Coal responses are generally positive, and natural gas seems to show a positive
response to a shock in carbon, while negative for oil between 1 and 2 weeks.
Moreover, oil response to coal is found to be sharply decreasing for a 1-week
period. Electricity seems to indicate a negative response to carbon prices with a
delay of approximately 1 week; the first impact is positive but not strong.

Fig. 2 Impulse response plot for Powernext. Each column shows the up to 9-week responses in all
series to a one-time-only shock in the series listed in the column header
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In addition, CO2 response to fuel prices proved to be almost negligible in
Powernext, although positive for electricity price shocks in EEX. An impact of
electricity in natural gas is negative in both markets, but is positive for coal and for
oil only after a stable period of 2 weeks. Natural gas seems to react positively in the
short term, turning out to decrease after that; oil response to natural gas is negative
and persistent until 2 weeks. The response of coal to natural gas disappears after
3 weeks, but coal reacts negatively to oil price shocks. In fact, oil shows the
strongest response of all the relevant fuels to CO2 prices in the short term even
though it remains minimal over time. It was observed that whereas electricity prices

Fig. 2 continued
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appear to react negatively after a shock in EEX, they react positively in Powernext,
and after compensation in the following periods the response to CO2 weakens.
Moreover, natural gas seems not to respond significantly to European Union
Allowances shocks.

Both carbon and gas shocks on electricity prices seem to produce a similar effect
in the first week but the gas price shock is completely absorbed after a 3-week
period, whether or not the shock in carbon price is persistent and unstable until 4-
week, implying a significant marginal effect. This can be explained by the fact that
the gas market is relatively mature.

Fig. 2 continued
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In the German case, gas prices do not seem to be significantly affected by a
shock in carbon prices and yet a gas price shock seems to affect both electricity and
carbon prices positively. A possible reason is that in the EEX a significant quantity
of electricity (around 11.9 %) is produced by gas-fired power stations (see Table 2)
and the main initiative, in order to fulfil the Kyoto target, has been to switch from
coal to gas, which occurred when we compare the values from 1998 to 2008.
Switching becomes more expensive if gas prices are high, and this is reflected in
higher carbon prices.

Fig. 3 Impulse response plot for EEX. Each column shows the up to 9-week responses in all
series to a one-time-only shock in the series listed in the column header
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Despite using impulse response functions, variance decomposition (VD) is
useful for examining the effects of shocks on the dependent variables. It determines
how much of the forecast error variance for any variable in a system is explained by
innovations to each explanatory variable over a series of time horizons. The result
will depend on the order in which the equations are estimated in the model and here
the selected order was: electricity, natural gas, coal, oil and EU ETS carbon.

Variance decomposition results are provided in Figs. 4 and 5, and Tables 5 and
6, for EEX and Powernext, respectively. Coefficients of the VD can be interpreted
as the price of elasticity; this implies for example that a 1 % gas price rise would, in

Fig. 3 continued
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Fig. 3 continued

Fig. 4 Forecast error variance decomposition plot for the EEX market. FEVD stands for forecast
error variance decomposition of electricity (elect.), gas, coal, oil and carbon (CO2). The period
analysed is January 2009 to July 2012 for the EEX market (corresponding to 148 observations).
Values are plotted in relative (%) units. The results of the likelihood ratio (LR) test for lag length in
the VAR for EEX (German market) favour the selection of two lags
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equilibrium, be associated with a 1.2 % electricity price rise in the EEX market for a
5 week period (see Table 5).16 Furthermore, since all coefficients are significant, all
price variables are important to define the equilibrium vector.

For the German market, gas, coal and carbon prices may be considered the
source of randomness, that represents the main driver of electricity. However, the
coal price is the main driver of the source of randomness. Innovations in gas,
electricity and carbon play a negligible role in explaining oil prices but the short-
term effect increases over time.

Innovation effects in the carbon market to electricity and other fuel markets are
null in the short term but the effect increase over time, and are stronger in oil, coal
and electricity markets, in this order. Electricity and natural gas explain more
uncertainty in coal prices in long horizons.

As we can also see, oil price seems to be mostly explained by coal prices, among
the variables considered here (around 7.7 % for all periods). In sum, shocks in the
German electricity, gas, coal and oil markets alone are not strong enough to
influence the behaviour of the carbon price traded, the impact of which should be
explained by factors other than those analysed here. Moreover, none of the fuels
and carbon shocks seem to have a short-term effect on electricity, and carbon does

Fig. 5 Forecast error variance decomposition plot for the Powernext market. FEVD stands for
forecast error variance decomposition of electricity (elect.), gas, coal, oil and carbon (CO2). The
period analysed is January 2009 to July 2012 for the Powernext market (corresponding to 184
observations). Values are presented in relative (%) units. The results of the likelihood ratio (LR)
test and Akaike information criteria (AIC) for lag length in the VAR for Powernext (French
market) favour the selection of two lags

16 Endogenous lagged variables were transformed into their natural logarithms to reduce
variability, and thus we obtain elasticity values directly from parameter estimates.
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not seem to be affected by gas, oil and electricity for the 1-week period in the
German EEX market.

Our results for the short term (considering 1-week period) in the EEX market can
be summarised as follows: gas shocks do not affect electricity and carbon; coal does
not affect electricity and gas; oil is not the source of randomness for electricity, gas,
coal and carbon; and carbon has a null impact on electricity, gas, coal and oil.
Although electricity seems to have a negligible impact on carbon, the effect is null
and vice versa.

Turning our attention to the Powernext market, we see that the oil price
uncertainty in the French market is explained in the long term mainly by coal prices
(7.7 %) and by carbon (3.0 %). However, in France the carbon price uncertainty is
mostly explained by coal prices, 1 % for longer periods, followed by natural gas
prices and oil. Since natural gas has only residual usage in this market (3.80 % in

Table 5 Forecast error variance decomposition (FEVD) for the EEX market

FEVD of: (variance due to a … shock) Period/weeks Elect. Gas Coal Oil CO2

Elect. 1 100 7.6 0.6 0.5 0.1

5 97.0 9.5 6.7 2.1 4.1

10 96.9 9.6 6.8 2.2 4.1

20 96.9 9.6 6.8 2.2 4.1

Gas 1 0.0 92.4 0.4 0.9 0.0

5 1.2 81.2 3.1 2.0 1.3

10 1.2 81.1 3.1 2.0 1.3

20 1.2 81.1 3.1 2.0 1.3

Coal 1 0.0 0.0 99.0 7.7 0.4

5 0.9 4.8 88.2 7.7 1.7

10 1.0 4.8 88.2 7.7 1.7

20 1.0 4.8 88.2 7.7 1.7

Oil 1 0.0 0.0 0.0 90.9 0.0

5 0.1 3.9 1.0 86.8 8.5

10 0.1 3.9 1.0 86.7 8.5

20 0.1 3.9 1.0 86.7 8.5

CO2 1 0.0 0.0 0.0 0.0 99.5

5 0.7 0.6 1.0 1.3 84.5

10 0.7 0.6 1.0 1.3 84.3

20 0.7 0.6 1.0 1.3 84.3

FEVD stands for Forecast Error Variance Decomposition of electricity (elect.), gas, coal, oil and
carbon (CO2). The period analysed goes from January 2009 until July 2012 for the EEX market
(corresponding to 148 observations). Values are presented in relative (%) units. The results of the
Likelihood ratio (LR) test for lag length in the VAR for EEX (German market), favour the
selection of two lags
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2008), innovations in natural gas prices explain only a small percentage of both
short and medium/long term carbon prices, which is even more evident for oil
(1.35 % in 2008). As also observed here, expanded nuclear power generation could
limit increases in electricity prices (Kara et al. 2008; Pinho and Madaleno 2011a)
more than in Germany. In France, gas and carbon shocks are the biggest sources of
randomness for electricity prices.

While oil and electricity are the major sources of randomness that drive the
carbon market for EEX (about 8.5 and 4.1 %, respectively), this is the case of coal
and gas in France (1.0 and 0.9 % respectively). Table 6 seems to indicate that coal
and carbon are the major sources of randomness for electricity prices for Powernext
(4.3 and 3.2 %, respectively), unlike EEX where it is gas and coal (1.2 and 1.0 %,
respectively).

Table 6 Forecast error variance decomposition (FEVD) for the French market

FEVD of: (variance due to a … shock) Period/
months

Elect. Gas Coal Oil CO2

Elect. 1 100.0 24.5 0.2 1.4 0.0

5 90.0 24.8 1.1 1.6 0.4

10 89.7 24.9 1.1 1.6 0.4

20 89.7 24.9 1.1 1.6 0.4

Gas 1 0.0 75.5 0.6 1.2 0.3

5 0.7 63.9 3.1 2.2 0.9

10 0.8 63.7 3.1 2.2 0.9

20 0.8 63.7 3.1 2.2 0.9

Coal 1 0.0 0.0 99.2 6.7 0.2

5 4.2 3.8 92.8 7.4 1.0

10 4.3 3.9 92.7 7.4 1.0

20 4.3 3.9 92.7 7.4 1.0

Oil 1 0.0 0.0 0.0 90.7 0.4

5 1.9 3.6 1.0 85.9 0.5

10 2.0 3.7 1.0 85.8 0.5

20 2.0 3.7 1.0 85.8 0.5

CO2 1 0.0 0.0 0.0 0.0 99.1

5 3.1 3.9 2.1 3.0 97.2

10 3.2 3.9 2.1 3.0 97.2

20 3.2 3.9 2.1 3.0 97.2

FEVD stands for forecast error variance decomposition of electricity (elect.), gas, coal, oil and
carbon (CO2). The period analysed is from January 2009 to July 2012 for the Powernext market
(corresponding to 184 observations). Values are presented in relative (%) units. The results of the
Likelihood ratio (LR) test and Akaike information criteria (AIC) for lag length in the VAR for
Powernext (French market) favour the selection of two lags
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As electricity generation in the French market relies mainly on nuclear (77.17 %
in 2007), innovations in carbon have an almost negligible impact on electricity
prices (Table 6—3.2 %), though it is still higher than that of gas and oil. In fact,
from the two markets under analysis, the results of forecast error variance
decomposition for the German market seem to indicate that electricity prices hardly
react to fuel price and carbon shocks (1.2 % for gas, 1 % for coal, 0.1 % for oil and
0.7 % for CO2), which confirms the relationship between production source, market
structure and electricity price response. These results are consistent with the fact
that there has been a large increase in the use of wind for electricity production in
the German market in recent years, but this will be addressed in future research due
to the current unavailability of data to include this source.

Carbon is not contemporaneous for either market, meaning that 1-week returns
(Tables 5 and 6 present a 0% value for that period) is affected by other energy market.
Therefore there are pressures from external factors not captured by the model.

Results reveal the absence of a unified energy market and, contrary to previous
literature (Mohammadi 2009), it seems policies related to the coal industry continue to
have amarginal influence on electricity, although the impact depends on the country’s
energy mix (for a more complete analysis see also Pinho and Madaleno 2011a).

On the power generation side, the price of gas affects operating choices more
than the price of coal. High gas price encourages a greater use of coal; if everything
else remains constant this should increase the demand for CO2 allowances as coal
emits twice the CO2 content of natural gas. Therefore, if fossil fuels become more
expensive, prices of EU ETS are likely to decrease or rise less than otherwise.
Moreover, another hypothesis can be explored in this setting. Relationships
between energy prices imply the possibility of substitution among the different
forms of energy (results would obviously depend upon the country’s energy mix).

Additionally, a more competitive market for electricity implies that spot market
prices may respond promptly to price changes in input fuel source markets. The
French market is the one that most deviates from the desired competition degree. In
the EEX, a carbon innovation is reflected less in electricity prices. More recently,
sharper increases in the price of allowances have led to speculation that electricity
producers might have manipulated the allowance market so as to raise the allow-
ance price, which then triggers an electricity price rise. If producers act as price
takers, raising prices artificially is not easy. Since all of them benefit from a price
increase, they might collude to manipulate the market and a reduction in market
power would be the only solution to reduce speculation.

Moreover, it cannot be assumed that profits from trading in secondary carbon
markets finance climate mitigation completely: an increasing number of participants
in the carbon market participate to profit from speculation.17 This trading of the
same carbon allowance or carbon derivative takes place mainly among financial
speculators who profit from speculating on the volatility of the price of carbon, and
not because they are subject to emission reduction targets or have an interest in

17 World Bank Carbon Finance Unit (2010): State and Trends of the Carbon Market 2010.
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climate mitigation. Increased involvement of speculative actors with no interest in
cost-effective implementation of greenhouse gas emission reduction targets may
hinder the carbon market achieving its original objective. The motivations of the
increasing number of speculative participants in the trading of carbon are opposed
to the motivations of those trading to manage their cost of compliance with an
emissions target. Participants whose trading is motivated by speculation will use
their trading power to generate, exploit and profit from price volatility, as specu-
lators profit from unpredictable price movements. Moreover, linking trading
schemes that operate in jurisdictions where the enforcement capacity differs sig-
nificantly will provide further ground for trading in “subprime” carbon derivatives
in particular, given that much of the trading activity in carbon offsets takes place
over-the-counter.

Even though the EU-Directive on trade of CO2 allowances is a promising step,
much more needs to be done to reach the ideal system. First, national governments in
the EU allocate the CO2 allowances in different ways; some are more generous than
others and there is a natural influence of lobbying. Second, outside the EU there is no
such system of allocation so that CO2 intensive industries outside the EU have no
incentive to economise on their CO2 emissions. In that case, cooperation between EU
and non-EU companies could result in additional allowances. Production technolo-
gies for electricity differ greatly in their CO2 emissions and it proves difficult to
reduce the aggregate level of emissions by governmental directives.

It can also be questioned whether allowances price act as reliable price signals for
companies to invest in less CO2 intensive production technologies. If a company uses
these desirable technologies, it may not be awarded allowances in the future so that it
cannot sell these and gain additional profits. Thus, the net benefit from switching to a
technology without CO2 emissions is dubious. Moreover, reducing the use of CO2

intensive technologies would foster the debate on the use of nuclear energy.

5 Conclusions

In this chapter, we analyse the relationships between electricity prices, primary
energies prices used in electricity generation and the price of carbon dioxide
emission permits in France and Germany using a VECM model. The difference in
responses to carbon constraints in the electricity generation sector were accounted
and allowed us to of the EU ETS given the energy mix heterogeneity of both
countries for the Phase II period.

We were able to show that the impact of carbon constraints on energy markets
depends on the countries’ energy mix. This allows us to conclude that it is not
always producers in countries using predominantly fossil fuels, which are great
carbon emitters, that undertake more carbon coercion; results indicate that they do
not necessarily include the price of emission permits in their electricity generation
and cost functions (EEX). Using other sources of electricity production like wind
might have helped us obtain more useful results to explain this. We also found that
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oil and electricity are the major sources of randomness that drive the carbon market
for EEX, but not vice versa given that it is coal that most impacts oil, and gas that
most impacts electricity. Furthermore, natural gas is significantly affected by
electricity in both the short and the long term. We also found that coal and gas have
the biggest impact on electricity prices.

Coal and gas are the major sources of randomness for carbon in France; how-
ever, coal is mostly affected by gas, and gas by electricity in this market. Whereas
carbon is the major source of randomness for electricity and gas in Powernext, this
is the case for coal and oil in EEX. For Powernext, we also found that coal and
carbon have the biggest impact on electricity prices. Also, coal is mostly used as a
power source in EEX and explains carbon better in this market than in Powernext.
However, carbon explains coal more in Powernext than in EEX.

Hitherto, it has been understood that policies related to the coal industry have a
marginal influence on electricity prices. Empirical results seem to show that policies
towards clean air still do not imply a rise in the cost of coal and electricity pro-
duction, but we have also seen that the coal market is the major source of ran-
domness for oil prices in both France and Germany. Throughout the period
analysed, the efficiency of the European market for emission allowances was
therefore unable to compel electricity producers to eliminate their emissions and
invest in cleaner technologies, whereas the desired effects also depended on policies
pursued for distributing allowances.

Given that CO2 markets are relatively new markets, we could improve the
quality of results by repeating the analysis some years from now because more data
becomes available as markets evolve. In addition, it would be productive to use
daily data which is currently impossible due to data restrictions. Moreover, portfolio
analysis using these different commodities from a trader’s point of view could offer
valuable insights into necessary strategies for these markets.
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An Overview of Electricity Price Regimes
in the U.S. Wholesale Markets

José G. Dias and Sofia B. Ramos

Abstract The U.S. electricity market is organized in several deregulated regional
markets. In this paper we specify a multi-regime switching model to study price
dynamics of electricity in the U.S. markets. Our results show that electricity prices
from the West and East coasts have different regime dynamics with the latter prices
switching more frequently between regimes. Additionally, our methodology sug-
gests that electricity prices are better parameterized by four regimes: the base
regime with low volatility; a spike up and a reverse regime both with high volatility
and short duration; finally, a fourth one has extremely high volatility. This latter
regime describes West coast prices during the California electricity crisis, but East
coast prices are also frequently in that regime. We find evidence of price syn-
chronization in the lowest and highest volatility regimes, i.e., prices from the East
and West coasts tend to be in the same regimes at the same time.

Keywords U.S. electricity markets � Deregulation � Electricity prices � Regime-
switching models � Volatility

1 Introduction

The electricity business activity can be roughly characterized by three sectors:
generation, transmission, and distribution, which were usually tied within a utility.
Generation is the process of generating electric energy from other forms of energy
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such as hydro energy, fossil fuels, harnessing wind, solar, or through nuclear fis-
sion. After being generated, electricity is distributed through high-voltage, high-
capacity transmission lines to local regions, where it is consumed. When the
electricity reaches the local destination of consumption, it is transformed into a
lower voltage and sent through local distribution wires to end-use consumers.

In the U.S., for many years each of these segments was investor-owned but state-
regulated or owned by the local municipality. But the 1980s saw the introduction of
a wave of deregulatory reforms that reached the electricity sector. Reforms were
implemented with the argument that competitiveness would rise and benefit con-
sumers by lowering prices in both the short and long runs.

The establishment of a competitive wholesale electricity market, i.e., a market
where competing agents offer and buy electricity was a key element of the
deregulation process. While wholesale pricing used to be of the exclusive domain
of large retail suppliers, a market in a competitive framework should open up to
new participants such as generators, retailers, or financial intermediaries or end-
users. To reach this goal, the Federal Energy Regulatory Commission (FERC), the
regulatory agency, introduced rules such open access to transmission service tariffs
and on the availability of transmission service of networks. Moreover, transmission
owners had to provide access to their networks at cost-based prices to end dis-
criminatory practices against unaffiliated generators.

Market power and the potential upsurge of prices are a major issue in the market
design of wholesale markets. As will be explained in more detail below, the
physical features of electricity favor imperfect competition, and ultimately dereg-
ulation could have adverse effects by increasing prices for end-users. Knittel and
Roberts (2005) refer that when regulated prices were set by state public utility
commissions in order to curb market power and ensure the solvency of the firm.
Price variation was minimal and under the strict control of regulators, who deter-
mined prices largely on the basis of average costs. In contrast, a wholesale market is
based on competitive bidding of supply and demand, and prices are set by market
clearance. Given that electricity demand has frequent fluctuations (e.g., extreme
temperatures) and that there are no inventories to buffer shocks, prices would fully
absorb shocks. Price jumps and spikes in volatility are then inevitable outcomes that
must be monitored. Concerns about market power were substantiated by the
California crisis in 2000–2001, when market power and exploitation of market
design imperfections caused an explosion in wholesale prices.

The deregulated nature of the U.S. electricity market as well as its fragmented
structure with many wholesale markets, makes it an interesting case for analyzing
the dynamics of prices after deregulation. The literature comparing U.S. electricity
prices in different locations is scant. Hadsell et al. (2004) compare electricity vol-
atility in five regions of the U.S. for the period 1996–2001 using a TARCH model;
Park et al. (2006) use a vector autoregressive (VAR) model to analyze spot prices in
different parts of the U.S. for the period 1998–2002. They find that electricity
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markets in the Western U.S. are separated from the Eastern markets at contem-
poraneous time, but this separation disappears for longer time horizons. The rela-
tionships between the markets depend on physical assets (such as transmission
lines) and institutional arrangements.

Our study analyzes price dynamics of U.S. regional markets by regime-
switching models (RSM). These models, introduced by Hamilton (1989), have been
extensively used to model electricity prices as they accommodate well electricity
price features such as asymmetric volatility, jumps, and spikes.1 The computational
burden in model estimation, which increases with the number of time series,
observations, and regimes is a hindrance to their empirical application. Our esti-
mation algorithm overcomes these limitations and allows the study of the cyclical
behavior of several electricity price time series in a parsimonious way, providing
new insights on the existence of common regimes and the synchronization between
them. Moreover, this approach recognizes different regime-switching dynamics of
electricity prices, so far not addressed in the literature. In addition, the flexible
modeling of observed returns using Gaussian mixture distributions makes it more
appropriate for non-Gaussian returns (see, e.g., McLachlan and Peel 2000; Dias and
Wedel 2004).

To study price dynamics in different regions of the U.S., we take the Dow Jones
U.S. Electricity Price Indexes. These price indexes cover several geographical
regions of the United States. We conclude that prices in the same U.S. region share
the same regime dynamics, i.e., prices of the East (West) coast markets behave
similarly. The best model parametrization has four regimes. The extremely high
volatility regime describes West Coast prices during the California electricity crisis,
but prices of the East coast markets are also frequently in that regime. Regional
electricity markets seem to differ in the time spent in each regime. West market
prices spend more time in the low volatility regime than East coast markets.
Strikingly, the time they spent in the spike regime is similar despite the episode of
the California crisis. To address the question of whether prices of the East and West
coasts are in the same regime at the same time, we compute synchronization
measures between and within regimes. We find evidence of price synchronization
in the lowest and highest volatility regimes, i.e., prices from the East and West
coasts tend to be in those regimes at the same time.

The rest of the chapter is organized as follows. Section 2 gives an overview of
the main changes in the U.S. electricity markets. Section 3 describes the data.
Section 4 introduces the econometric methodology. Section 5 presents and dis-
cusses the empirical results. Section 6 analyzes the synchronization between the
different electricity markets and, finally, Sect. 7 concludes the paper.

1 See, e.g., Fong and See (2002), Huisman and Mahieu (2003), Bierbrauer et al. (2007), Haldrup
et al. (2010), and Janczura and Weron (2010).
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2 The Establishment of a Wholesale Market

The deregulation process targeted two key features of the utility sector: monopolies
and natural barriers to entry. Joskow (1997) describes that the deregulation process
had two main goals. First, to separate the potentially competitive functions of
generation and retail from the natural monopoly functions of transmission and
distribution. Second, to establish a wholesale electricity market and a retail elec-
tricity market.

Ideally, a wholesale market should have a sound free-market base such as
competitive supply offers, demand bids and prices set by market-clearance. To
achieve this, it urged to push for the breakdown of barriers to entry and attraction of
new players into the market. In 1996 a set of measures were implemented to ease
entry and enhance competition. For instance, established transmission owners had
(i) to provide access to their networks at cost-based prices, (ii) to end discriminatory
practices against unaffiliated generators and marketers, (iii) to expand their trans-
mission networks if they did not have the capacity to accommodate requests for
transmission service, and (iv) to provide non-discriminatory access to information
required by third parties to make effective use of their networks.

These measures were reinforced by the FERC Order 2000 issued in December
1999. This contained a new set of regulations designed to facilitate the “voluntary”
creation of large regional transmission organizations to solve problems created by
the balkanized control of U.S. transmission networks and alleged discriminatory
practices affecting independent generators and energy traders seeking to use the
transmission networks of vertically integrated firms.

The particular features of the electricity operations are a hindrance to competi-
tion. Monopolies emerge as an outcome of economies of scale of the generation
process and the losses from long-distance transmission. To truly compete in the
distribution sector, rival firms should duplicate wire networks. However, the
duplication of infrastructures is inefficient as there is a need to keep the system
adequacy, i.e., the balance between inflow and outflow at all times. The failure to
balance leads to the collapse of the grids which has severe economic losses.2,3

Market power also arises because of the inelasticity of energy demand. This
naturally leads to high prices at peak times as demand rises above the production
capacity of generators and further price increases result in little additional supply or
reduction of demand. The prices then naturally reflect the scarcity of supply relative
to demand.

2 The grid needs to be constantly surveyed and cannot be under or overloaded. This implies that if
wires owned by different companies were allowed to interconnect to form a single network, then
the flow on one line could affect the capacity of other lines in the system to carry power creating
risky unbalances.
3 A recent case of grid collapse happened in India. India has increased the number
interconnections between regional grids, approaching a single national grid. A breakdown in
one part of the grid loaded other parts of the grid massively making the system collapse.
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Given that electricity is not storable, inventories cannot be used to load the grid
and smooth prices over time. As a result, deregulated prices are characterized by
volatility that varies over time and occasionally reaches extremely high levels,
commonly known as “price spikes”.

Market power and imperfect competition have well-known economic implica-
tions such as high profits for sellers at the cost of higher prices for consumers
contradicting the aims of the deregulation process. Moreover, increased volatility
and subsequent losses represent additional risks for market participants which for
instance has led to the emergence of power derivatives markets. Market power has
other detrimental effects on economic growth because high energy costs imply an
increase of costs for firms and price volatility also creates uncertainty which tends
to postpone investment decisions.

Finally, market power affects the reliability and credibility of wholesale markets.
The California electricity crisis in 2000–2001 is a good illustration of what can go
wrong in the deregulation process due to imperfections in the deregulated market.
Energy traders created artificial shortages in days of peak demand to increase prices
and company profits. The explosion of prices and the rolling blackouts adversely
affected many businesses dependent upon a reliable supply of electricity, and
inconvenienced a large number of retail consumers.4 The California state suffered
from multiple large-scale blackouts, and one of the state’s largest energy companies
collapsed with harmful economic effects.5

3 Data

We use Dow Jones U.S. Electricity Price Indexes to analyze electricity prices in
different regions of the U.S. Indexes. These prices cover different regions of the
U.S. market, namely the West and East coasts. From the West region, and condi-
tional on data availability, we use California and Oregon Border (COB), Four
Corners (Utah, Colorado, New Mexico and Arizona), Mid Columbia (Washington)
and Palo Verde (Arizona) prices indexes; from the East region, we use CINERGY
(Ohio, Indiana) and PJM (Pennsylvania) interconnection which is the world’s
largest competitive wholesale electricity market. These indexes are volume-
weighted averages of wholesale electricity transactions and provide a clear spot
market indication for over-the-counter trading in that region.

Our sample covers prices from 6th January 1999 through 7th July 2010, for a
total of 601 price observations. Prices are weekly, from Wednesdays like Mjelde
and Bessler (2009), and in U.S. dollars. Let Pit be the observed weekly closing price

4 Energy traders took power plants offline for maintenance in days of peak demand. This
increased power prices sometimes by 20 times its normal price.
5 For a detailed explanation of California electricity crisis, we refer to Faruqui et al. (2001),
Moulton (2005), and Woo (2001).
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of market i on day t, i ¼ 1; . . .; n and t ¼ 0; . . .; T . Thus, the weekly rates of return
are defined as the log-rate percentage: yit ¼ 100� log Pit=Pi;t�1

� �
; t ¼ 1; . . .; T .

Figure 1 depicts electricity prices for the entire period. Electricity prices show
extraordinary volatility during 2000–2001, the period of the California electricity
crisis. Prices in the East coast—CINERGY and PJM—also tend to show frequent
price spikes.

Table 1 summarizes the descriptive statistics for the returns. The mean is positive
for all series, except for CINERGY. As expected, electricity returns show high
dispersion (standard deviation) and kurtosis. Interestingly, West region prices tend
to show positive skewed distributions, whereas East coast series are negatively
skewed. The heavy tails and skewness of the distributions turn out to reject the
normality for all time series (Jarque Bera test, p-value < 0.001).

The stylized characteristics of these price returns—cyclical behavior, jumps, and
spikes—provide ground for applying regime switchings models.

4 Methodology

The methodology applied in this work falls within the regime switching framework.
Regime switching models (RSM) have been extensively applied in economics and
finance research and the modeling of electricity prices is no exception (see, e.g.,
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Fig. 1 Dow Jones electricity price indexes
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Deng 1998; Ethier and Mount 1998). In a meta-analysis of several econometric
approaches, Bierbrauer et al. (2007) conclude that a major strength of regime
switching models over other econometric models is its flexibility in accommodating
extreme observations. In particular, the model allows for consecutive spikes in a
very natural way, as well as the switching of prices to the ‘normal’ regime after a
spike.6 In short, these models are a parsimonious representation the unique char-
acteristics of power prices. Moreover, regimes are able to describe the price jumps
caused by different levels of demand and supply (see, e.g., Andreasen and Dahlgren
2006; Bierbrauer et al. 2007; Deng 1998; Ethier and Mount 1998; Huisman and
Mahieu 2003; Janczura and Weron 2010, 2012). In particular, they capture specific
characteristics such as the spiky and nonlinear behavior of electricity prices
(Bierbrauer et al. 2007; Mari 2006; Weron et al. 2004). Thus, the introduction of
nonlinearities by the regime-switching mechanism admits temporal breaks in model
dynamics.

The application of RSM has been hindered by two (related) practical issues:
computational burden and the number of regimes allowed. Because of the com-
putational burden, seminal works set up two regimes a priori (see Deng 1998 and
Ethier and Mount 1998). Huisman and Mahieu (2003) are the first to propose a
three-regime model, but with constraints: the initial jump regime is immediately
followed by the mean-reversing regime and then moves back to the base regime.
Using electricity price data from the Dutch, German, and the United Kingdom
markets, they found that a regime-switching model performs better than a stochastic
jump model specification for both mean-reversion and spikes. Our work departs
from previous studies because we do not impose a priori the number of regimes that

Table 1 Summary statistics

Mean Std. deviation Skewness Kurtosis Jarque-Bera test

Statistics p-value

CINERGY −0.014 36.079 −0.319 8.038 623.84 0.000

4_CORNERS 0.096 28.441 0.367 14.303 3117.11 0.000

MID_COLUMBIA 0.070 34.939 0.194 13.226 2543.13 0.000

PALO_VERDE 0.067 28.988 0.292 14.280 3099.35 0.000

PJM 0.049 34.327 −0.460 9.383 1007.80 0.000

COB 0.064 29.718 0.270 16.089 4171.58 0.000

This table reports descriptive statistics and the Jarque-Bera test of normality for electricity prices
returns. The returns are percentage log-rate returns (weekly data) and are from 06-01-1999 to
07-07-2010

6 Other econometric approaches such as stochastic jump models have been applied in energy price
modeling. Comparisons show that regime-switching models present many advantages in modeling
the spiky and nonlinear behavior of electricity prices over competing techniques (Bierbrauer et al.
2007; Janczura and Weron, 2010; Mari 2006; Weron et al. 2004).
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best captures the features of the electricity time series and proposes a joint analysis
of distinct electricity markets.

We use the heterogeneous regime-switching model (HRSM) in Dias et al. (2008,
2009) and Ramos et al. (2011). This statistical model defines classes of regime-
switching models based on the similarity of the dynamics within each class. An
advantage of this approach is that we can see whether different time series share
regimes (or regime dynamics). This model assumes two different types of discrete
latent variables or states:

1. each time series belongs to a specific group or cluster, say w 2 f1; . . .; Sg. A
model with S clusters is called a HRSM-S;

2. each specific time series is modeled as a regime-switching model with K regimes
and zit 2 f1; . . .;Kg for all t ¼ 1; . . .; T is the state occupied by the time series i at
time t. Transitions between the K regimes over time follow a first-order Markov
process.

Based on the definition of yit introduced previously, let f ðyi;uÞ be the density
function of the electricity time series i. The HRSM-S is defined by:

f ðyi;uÞ ¼
XS

wi¼1

XK

zi1¼1

. . .
XK

ziT¼1

f ðwiÞf ðzi1jwiÞ
YT

t¼2

f zitjzi;t�1;wi
� �

f yijwi; zi1; . . .; ziTð Þ: ð1Þ

where: (a) f ðwiÞ is the probability of time series i belongs to cluster w; (b) f ðzi1jwiÞ
is the initial-regime probability, i.e., the probability that time series i starts the
sequence in regime k conditional on belonging to the cluster w; (c) f zitjzi;t�1;wi

� �
is

a latent transition probability, i.e., the probability of being in a particular regime at
time t conditional on the regime at time t � 1 and within the cluster w. Assuming a
time-homogeneous transition process, pjkw ¼ P Zit ¼ kjZi;t�1 ¼ j;Wi ¼ w

� �
is the

relevant parameter. Thus, for cluster w the transition probability matrix is

Pw ¼
p11w . . . p1Kw
..
. . .

. ..
.

pK1w � � � pKKw

0

B@

1

CA;

with
PK

k¼1 pjkw ¼ 1. Thus, the HRSM-S extends the traditional RSM as it allows
cluster specific regime-switching dynamics.

The last term in Eq. (1) is the observed data density conditional on the regimes,
f yijwi; zi1; . . .; ziTð Þ. Assuming that the observed return at a particular time depends
only on the regime at that time, i.e., conditional on the latent state zit, the response
yit is independent of returns and regimes at other time points:

f yijwi; zi1; . . .; ziTð Þ ¼
YT

t¼1

f ðyitjzitÞ: ð2Þ
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The probability density of the return i at time t conditional on the regime
occupied at time t, f ðyitjzitÞ, is assumed to have a normal density function. For
regime k, this distribution is characterized by the parameter vector hk ¼ ðlk;r2kÞ,
i.e., the expected return or mean (lk) and risk or variance (r2k ). The right-hand side
of Eq. (1) shows that we are dealing with a mixture model consisting of time-
constant latent variable wi and T realizations of the time-varying latent variable zit.
As in any mixture model, the observed data density f ðyi;uÞ results from margin-
alizing over the latent variables, in this case over the S � KT mixture components
(see McLachlan and Peel 2000). Since f ðyi;uÞ is a mixture of densities across
clusters and regimes, it defines a flexible Gaussian mixture model that can
accommodate deviations from normality in terms of skewness and kurtosis (see,
e.g., Dias and Wedel 2004 and Pennings and Garcia 2004).

The estimation of the HRSM-S parameters is performed by the maximum
likelihood (ML) method. Given the presence of missing data (clusters and regimes),
the expectation-maximization (EM) algorithm (Dempster et al. 1977) is a natural
choice for maximizing the log-likelihood function: ‘ðu; yiÞ ¼

Pn
i¼1 log f ðyi;uÞ.

Since the EM algorithm at the Expectation-step requires the computation and
storage of S� KT entries of f wi; zi1; . . .; ziT jyið Þ for each time series, computation
time and computer storage increases exponentially with the number of time points.
However, for regime-switching models, a special variant of the EM algorithm has
been proposed that is usually referred to as the forward-backward or Baum-Welch
algorithm (Baum et al. 1970) and will be used here.

A key issue in regime-switching modeling is the decision on the optimal number
of regimes needed. For the HRSM-S, the selection of the number of clusters (S) and
regimes (K) is based on the Bayesian information criterion (BIC) of Schwarz
(1978) given by

BICS;K ¼ �2‘S;Kðû; yÞ þ NS;K log n; ð3Þ

where NS;K is the number of free parameters in the regime-switching model and n is
the sample size. The combination ðS;KÞ with the minimum BIC identifies the best
model.

5 Empirical Results

This section reports the estimates of the HRSM-S applied to electricity indexes. We
estimate models with the density function given by Eq. (1) for different values of
S (S ¼ 1; . . .; 8) and K (K ¼ 1; . . .; 8). For each combination, we use 1000 different
sets of random starting values to minimize the impact of local maxima. A solution
with two latent classes (S ¼ 2) and four regimes (K ¼ 4) yields the lowest BIC
value (log-likelihood = −16258.8; number of free parameters = 39; and
BIC = 32587.6). This means that the best solution incorporates two types of regime
dynamics and four regimes.
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Table 2 summarizes the results for the distribution of electricity prices across
latent classes. Each latent class indicates a cluster, i.e., a group of prices that shares
the same regime dynamics. Electricity prices are classified into two clusters, indi-
cating that East coast electricity prices have different dynamics from those of the
West coast (i.e., CINERGY and PJM are in latent class 2, whereas other price
indexes are in latent class 1). The class assignments always have probability one,
i.e., there is no uncertainty about the classification of these time series.

Regimes are described in Table 3. The first set of rows shows the estimates of
the probability PðZÞ: the average proportion of returns in each regime over time.
Overall, electricity prices are in regime 1 16.2 % of the time, in regime 2 7.4 % of
the time, in regime 3 58.4 % of the time, and in regime 4 18.0 % of the time.

The next set of rows presents the expected returns and variance of each regime.
Regimes are sorted by mean returns; regime 1 has the lowest returns and regime 4
the highest. Regimes 1–3 have negative mean returns. Regime 1 has very negative
mean returns and high volatility, while regime 2 has negative mean returns and the
highest volatility of all regimes; regime 3 has negative mean returns and the lowest
volatility, which resembles ‘the base regime’.7 Regime 4 has positive returns and
the variance is similar to that of regime 1, it is the ‘up spike’ or the ‘up’ regime. The
daily standard deviation for regimes 1, 2, 3 and 4 are 22.7, 88.0, 11.6 and 24.6,
respectively. The extremely high volatility of regime 2 should be noted as it shows
levels not reported in previous studies.

Results in Table 4 shows why electricity prices do not share the same dynamics,
or are in different clusters. The first row gives the estimated probabilities of being in

Table 2 Estimated prior and posterior probabilities and modal classes

Latent class 1 Latent class 2 Modal

Prior probabilities 0.643 0.357

Posterior probabilities

CINERGY 0.000 1.000 2

4_CORNERS 1.000 0.000 1

MID_COLUMBIA 1.000 0.000 1

PALO_VERDE 1.000 0.000 1

PJM 0.000 1.000 2

COB 1.000 0.000 1

This table reports the electricity prices level probabilities and modal latent class. Prior probabilities
provide the size of each latent class or cluster and posterior probabilities express the evidence that
a given electricity time series belongs to a given latent class. The maximum posterior probability
indicates the modal latent class

7 We will apply terminology common to previous papers to characterize regimes: base, reverse,
and spike regimes.
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a particular regime for each cluster, i.e., electricity time series have different regime
probabilities across classes.

West coast prices (latent class 1) have 0.67 probability of being in regime 3 (the
base regime), whereas in the East coast (latent class 2) this probability is reduced to
0.43. East coast prices spend more time in spike regimes with probabilities of
regimes 1 and 4 adding up to 0.488; on the other hand, probabilities of spike
regimes from the West coast add up to only 0.261. Notwithstanding, both have a
similar probability of being in the crisis regime, regime 2, despite the well-known
crisis in California.

In the second row, we present the transition probabilities between the regimes
for each group. It means that the closer the diagonal value is to one, the higher the
regime persistence. In other words, once an electricity price enters a given regime, it
is likely to stay in the same regime for some period of time.

All prices show regime persistence for regimes 2 and 3, those with the highest
and lowest volatility. Inversely, regimes 1 and 4 do not show persistence, i.e., the
likelihood of continuing in regime 1 and 4 is very small (spike regimes). West coast
prices have a 0.802 probability of jumping from regime 4 to regime 1 and East coast
prices a 0.733 probability. This means that after spiking up, there is a high prob-
ability that prices will go down. It is likely that prices from regime 1 jump to regime
3, the base regime, or spike again to regime 4, highlighting a very dynamic nature.

The (mean) sojourn time is the expected time that a price takes to move out of a
given regime and is measured in weeks. It is given for regime k and conditional on
the latent class w by 1=ð1� pkkwÞ. Naturally, regimes with regime persistence have
higher sojourn times. Regimes 2 and 3, the ones that show persistence, have sojourn
times of 8 and 14 weeks for West coast, while mean times for spike regimes are
around 1 week. Prices from the East coast stay in regime 3, the base, for shorter
periods of time. Again, the evidence suggests that returns in the East coast are more
volatile and change more often between regimes than those of the West coast.

Figures 2 and 3 show the regime-switching dynamics in electricity prices in each
group through time. It depicts the posterior probability of being in each regime at
period t. Electricity has a dynamic nature and its frequent switches between regimes

Table 3 Description of regimes

Regimes 1 2 3 4

P(Z) 0.162 0.074 0.584 0.180

(0.023) (0.018) (0.052) (0.028)

Return (mean) −25.453 −0.756 −0.103 23.833

(1.986) (5.546) (0.286) (2.050)

Risk (variance) 517.497 7763.911 134.130 604.573

(49.701) (874.390) (7.657) (54.417)

This table reports the estimated marginal probabilities of regimes—PðZÞ: is the average proportion
of markets in each regime over time, means, and variances. Standard errors are reported in round
brackets
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are notorious. The figures depict how the groups of prices have different patterns of
regime switching. Light grey areas correspond to regime 3, the base regime, as
revealed already by the probabilities.

West coast prices were usually in regimes 3 (light grey), 4 (white), and 2 (dark
grey) during the California crisis. The dynamics of East coast prices are consistent
with the information in the tables, namely the shorter durations of regimes and the
frequent switching. Regime 2, the one with the highest volatility, occurs frequently

Table 4 Estimated regime occupancy and transition probabilities within each latent class

Regimes 1 2 3 4

Latent class 1

PðZjWÞ 0.126 0.070 0.670 0.135

(0.014) (0.022) (0.035) (0.016)

Regime 1 0.138 0.067 0.370 0.425

(0.049) (0.022) (0.048) (0.051)

Regime 2 0.001 0.876 0.001 0.122

(0.007) (0.035) (0.003) (0.036)

Regime 3 0.001 0.000 0.929 0.070

(0.003) (0.002) (0.010) (0.010)

Regime 4 0.802 0.001 0.003 0.194

(0.058) (0.007) (0.018) (0.056)

Sojourn time 1.160 8.052 14.124 1.240

Latent class 2

PðZjWÞ 0.226 0.082 0.430 0.262

(0.025) (0.029) (0.042) (0.028)

Regime 1 0.131 0.001 0.362 0.506

(0.053) (0.005) (0.081) (0.079)

Regime 2 0.022 0.857 0.081 0.040

(0.090) (0.051) (0.045) (0.068)

Regime 3 0.004 0.001 0.794 0.202

(0.018) (0.003) (0.034) (0.038)

Regime 4 0.733 0.043 0.004 0.220

(0.063) (0.016) (0.019) (0.059)

Sojourn time 1.151 6.974 4.843 1.282

This table reports the estimated probabilities of being in a regime conditional on the latent class:
PðZjWÞ. Rows below report transition probabilities between regimes. The last row in each panel
reports the mean sojourn time, i.e., the expected time a stock market takes to move out of a given
regime. It is given for regime k and conditional on the latent class w by 1=ð1� pkkwÞ. Standard
errors are reported in round brackets
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in the East coast. Interestingly, the period of the California electricity crisis is
clearly identified by the dark grey area in the figure. This episode, well captured by
regime 2, seems to be time specific and has not occurred again in the West coast.8
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Fig. 2 Price dynamics in the U.S. West Coast. This figure shows the estimated posterior regime
probability in latent class 1

8 The case of California led to specific measures in order to prevent similar cases. For instance,
Moulton (2005) mentions the introduction of mitigation procedures after the energy crisis in
California (2000–2001).
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It is also interesting to note that in the East coast, periods of extremely high
volatility occurred frequently after 2001 and prices spikes often seem to occur.

Our results support a four regime parametrization contrasting with previous
works such as Huisman and Mahieu (2003), Bierbrauer et al. (2007), Janczura and
Weron (2010) that used three regimes; however, their study did not use U.S. data
which included the particular episode of California Crisis with extremely high
volatility due to price manipulation.

6 Electricity Synchronization

In this section we look at the synchronization of the regimes. To measure syn-
chronization and co-movement in the electricity price series, we compute the
association between prices using the posterior probability of being in regime k. In
other words, synchronization is measured by the likelihood that prices share regime
k at the same period t.

Let âit be the estimated probability that electricity price i at time t will be in
regime k. To obtain a number in the full range of real numbers, this probability is
expressed using the logit transformation:
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log it itk ¼ log
âitk

1� âitk

� �
: ð4Þ

Table 5 Synchronization between electricity price regimes

Time series

(1) (2) (3) (4) (5) (6)

Panel A: regime 1

CINERGY (1) 1

4_CORNERS (2) −0.031 1

MID_COLUMBIA (3) −0.031 0.594 1

PALO_VERDE (4) −0.047 0.916 0.554 1

PJM (5) 0.675 −0.115 −0.043 −0.105 1

COB (6) −0.063 0.753 0.841 0.716 −0.093 1

Panel B: regime 2

CINERGY (1) 1

4_CORNERS (2) 0.513 1

MID_COLUMBIA (3) 0.390 0.707 1

PALO_VERDE (4) 0.498 0.942 0.669 1

PJM (5) 0.789 0.383 0.432 0.384 1

COB (6) 0.513 0.890 0.873 0.860 0.470 1

Panel C: regime 3

CINERGY (1) 1

4_CORNERS (2) 0.355 1

MID_COLUMBIA (3) 0.313 0.660 1

PALO_VERDE (4) 0.362 0.952 0.638 1

PJM (5) 0.677 0.326 0.331 0.328 1

COB (6) 0.365 0.836 0.867 0.833 0.384 1

Panel D: regime 4

CINERGY (1) 1

4_CORNERS (2) 0.028 1

MID_COLUMBIA (3) −0.011 0.596 1

PALO_VERDE (4) 0.021 0.917 0.555 1

PJM (5) 0.663 −0.044 −0.025 −0.056 1

COB (6) −0.019 0.749 0.847 0.708 −0.049 1

This table reports the correlation between electricity prices based on the logit of the posterior
probability of being in regimes 1, 2, 3 and 4, see Eq. (4)
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Synchronization is quantified using the product-moment correlation between the
logits for two time series. Our logit-based measure does not suffer from distortion
caused by outliers because it filters out extreme observations of prices.

Table 5 shows the correlation between price time series. Panel A shows the
probability of two electricity price series being in regime 1 at the same time, and the
other panels for the other regimes.

For prices in the same cluster, or geographical area, it is likely that correlation
within the cluster is high since they share the same regime dynamic. However, if
electricity price indexes are in different clusters, it is interesting to see whether there
is synchronization so as to gain some insights about common drivers.

We find a clear distinction of synchronization of regimes. For regimes with
regime persistence, there is synchronization between groups (Regimes 2 and 3
present synchronization within and between groups) but we do not find evidence of
synchronization for the other two regimes. To put it simply, when prices of the
West coast are in the base (or the highest volatility) regime, it is likely that prices of
the East coast are also in the base (or the highest volatility) regime. Conversely, it is
not likely that prices of the East and West coasts will be found in regimes 1 and 4 at
the same time. The correlation is high between returns within classes, but close to
zero between the different geographical areas.

7 Conclusion

The 1980s saw the implementation of a wave of deregulatory reforms in the U.S.
electricity sector. Wholesale electricity markets were transformed from a highly
regulated government controlled system into deregulated local markets. The
increase in competition of wholesale markets changed price dynamics and increased
price volatility, exposing consumers and producers to significantly greater risks.

We draw on the literature that has proposed multi-regime frameworks to charac-
terize electricity prices. We depart from previous work because we do not impose a
fixed number of regimes a priori. Our findings suggest that a four-regime parame-
trization offers a better characterization of the price dynamics: a base regime, an
extremely high volatility regime, a spike up regime, and a reverse regime. Our results
show that electricity prices fromWest and East coasts have different regime dynamics
with the latter prices switching more often between regimes. Additionally, our
methodology suggests that electricity prices are better parameterized by four regimes:
the base regime with low volatility; a spike up and a reverse regime both with high
volatility and short duration; and a fourth one with extremely high volatility. The
extremely high volatility regime describes West coast prices during the California
electricity crisis, but East coast prices are also frequently in that regime. We find
evidence of price synchronization in the lowest and highest volatility regimes, i.e.,
prices from the East and West coasts tend to be in those regimes at the same time.
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In summary, in this chapter we describe and compare the price dynamics of
electricity prices in the wholesale electricity markets of U.S. East and West coasts.
The characterization of joint price dynamics is of great importance to financial
market participants and may be useful in making optimal risk management
decisions.
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Pricing Futures and Options in Electricity
Markets

Fred Espen Benth and Maren Diane Schmeck

Abstract In this paper we derive power futures prices from a two-factor spot
model being a generalization of the classical Schwartz–Smith commodity dynam-
ics. We include non-Gaussian effects by introducing Lévy processes as the sto-
chastic drivers, and estimate the model to data observed at the European Electricity
Exchange in Germany. The spot and futures price models are fitted jointly,
including the market price of risk parameterized from an Esscher transform. We
apply this model to price call and put options on power futures. It is argued
theoretically that the pricing measure for options may be different to the pricing
measure of futures from spot in power markets due to the non-storability of the
electricity spot. Empirical evidence pointing to this fact is found from option prices
observed at the European Electricity Exchange.

Keywords Energy markets � Pricing measures � Jump processes � Spot price �
Futures and forwards � Options

1 Introduction

In the last two decades markets for power have been liberalized in Europe and other
places world-wide. Nowadays, we find well-functioning markets for purchase of
electricity in many countries on the European continent, in the Nordic countries and
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in the UK. Furthermore, there exists markets in North America, Australia and some
places in Asia. Typically, these markets separate between a day-ahead spot market
for electricity, and financial contracts for future delivery of power. In some, more
developed markets, one also trades in derivatives like plain vanilla call and put
options on the futures contracts. This takes place in for example the Nordic market
NordPool and the German market European Electricity Exchange (EEX).

In this paper we focus the attention on pricing spot, futures and options jointly in
the power market. Our aim is to argue for a separation of the modelling of the risk
premium charged in the futures market and the risk neutral measure used for
options pricing. The classical approach to futures pricing is to specify a stochastic
dynamics of the spot price, and define the futures price as the conditional risk-
adjusted expected average spot price over the delivery period. The risk-adjustment
is modelled by a specification of pricing probabilities, which changes the charac-
teristics of the spot dynamics (see Benth et al. 2008 for a discussion and application
of this approach to energy markets). Usually, as this approach yields a risk neutral
(or martingale) dynamics of the futures price, one would price options using the
same probability. We argue here that there is no violation of no-arbitrage pricing to
have another pricing measure for options, as long as this is an equivalent martingale
measure for the futures price dynamics. The economic argument in favour of this is
the non-storability of the electricity spot price.

Based on a small data set of option prices at the EEX, we also argue empirically
for this possibility. Fitting a two-factor model for the spot price dynamics to EEX
data, we price futures and calibrate the risk premium using a parametric class of
pricing probabilities stemming from the Esscher transform (see Benth et al. 2008).
Although the access to option data at the EEX is poor due to a rather illiquid
market, we find evidence for a different risk neutral pricing measure than the one
used to derive futures prices from the spot dynamics. We benchmark our results to
the Black-76 prices derived from historical volatility.

Our two-factor spot model is a generalization of the Schwartz–Smith dynamics
(see Schwartz and Smith 2000), consisting of a long-term non-stationary factor and
a short-term stationary factor. The Schwartz–Smith model has been applied to
electricity markets by Lucia and Schwartz (2002), who analysed spot and futures
data at the NordPool market. As the Schwartz–Smith model is Gaussian, it fails to
account for the large spikes in the market. We extend the model to include Lévy
process driven noises, which also accounts for the high variability in EEX prices in
non-spike periods. Our proposed model is a simplification of the dynamics pro-
posed and analysed in Benth et al. (2011) and Barndorff-Nielsen et al. (2013). The
fitting of the spot and futures dynamics goes by filtering the non-stationary factor by
using futures prices of contracts far from delivery.

The presentation of our results are separated into several sections. In the next
section we present the rationale behind pricing of futures in power markets. Fur-
thermore, we discuss the pricing of options, and why one may use a different
probability for this purpose. Section 3 first defines the two-factor spot model, and
presents theoretical futures prices based on this dynamics. The joint spot and futures
price model is estimated to EEX data in Sect. 4, while Sect. 5 analyses empirically
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the option pricing performance of our futures price model. This section argues in
favour of a different pricing measure for options. Finally, in Sect. 6, we conclude
and outline some future research directions.

2 The Relation Between Spot, Futures and Options
in Power Markets

Typically, the liberalized power markets are divided into a day-ahead spot market, a
financial market for futures (and/or forwards1) contracts on power, and a market for
plain vanilla call and put options on the futures. The futures contracts deliver the
underlying power over an agreed period of time, and the delivery is settled finan-
cially, i.e., the money-equivalent of the spot is delivered. These contracts are
denominated in a “currency” per MWh and work essentially as a swap contract
where one exchanges a floating spot price against a fixed over the contracted period.

For example, in the German EEX market the swaps have delivery periods being
months, quarters or years. The swap price is naturally denominated in Euro per
MWh, and the contract is accounted against the hourly power spot price. One
distinguishes between base and peak load contracts, where the peak load take into
account only the power spot prices in the peak hours, defined as the working days
from 8 in the morning to 8 in the evening. The base load contracts are settled
against the spot price of all hours in the delivery period.

The power spot prices are determined in an auction-based system, where the
traders hand in prices and volumes for production or consumption for given hours
the next day. Based on these bids, the exchange creates demand and supply curves
for each hour the following day, and at 2 p.m. the EEX publishes these spot prices
for the 24 h next day. We emphasise that the trade in the power spot market is
physical, and one therefore needs to have facilities for either producing or con-
suming (retailing) electricity. Unlike most other assets that can be traded, one
cannot form a portfolio and use the spot for investment or speculation purposes. By
the very nature of electricity, it is not possible to store. There are some exceptions,
since one may in fact use water reservoirs, say, as storage of power in terms of
potential energy. However, this is only possible for a limited segment of the market,
namely the hydro power producers.

The options traded in the market are written on specific financial swap contracts.
At the EEX power options are written on the Phelix Base futures with monthly,
quarterly and yearly delivery periods. The EEX offers only European style call and
put options, where the exercise takes place four trading days prior to the beginning
of the delivery period of the underlying futures.

1 Some markets have both forwards and futures traded. We shall not make a distinction between
these two asset classes here, but stick to the notion of futures.
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Let us discuss at a more technical level the relationship between spot prices,
swaps, and options. For illustration, consider first a market where the spot is a
liquidly tradeable asset, like for example an exchange-traded stock. We denote SðtÞ
as the spot price at time t� 0, and consider a futures contract which delivers the
spot at a maturity time T. The futures price at time t� T is denoted by f ðt; TÞ, and
from standard no-arbitrage arguments based on the cash and carry strategy (see e.g.
Duffie 1992), it can be determined as

f ðt;TÞ ¼ SðtÞerðT�tÞ : ð1Þ

Here, r[ 0 is the deterministic risk-free interest rate, where we have supposed
that interest rates are continuously compounded. As is known from classical financial
theory, (1) can be established without any model assumptions on the spot price.

Assume that we are given a complete filtered probability space ðX;F ;

fF tgt2½0;~T �;PÞ. We interpret ~T\1 as the time horizon of the market, including the
maturities of all options and futures relevant in our analysis. If SðtÞ is a semi-
martingale process, then there exists (at least one) equivalent martingale measure Q
such that

f ðt; TÞ ¼ EQ½SðTÞ jF t� : ð2Þ

We refer to Shiryaev (1999) for the rigorous argumentation with conditions
leading to this representation of f ðt; TÞ. In a complete market, i.e., a market where
all derivatives on S can be replicated, the probability measure Q is uniquely defined.
In the case of an incomplete market, one may have many such measures Q. The
question is to determine one relevant for pricing of derivatives. But, once such a
measure is pinned down, we can price futures and next use the same probability for
pricing options. Thus, for example the price of a European option with payoff
gðf ðs; TÞÞ at exercise time s� T becomes

CðtÞ ¼ e�rðs�tÞ
EQ½gðf ðs; TÞÞ jF t� ;

for 0� t� s. Note that we use the same Q for both the futures and the option, as is
the customary when pricing several derivatives based on an asset in an incomplete
market situation. Note, however, that we may use different equivalent martingale
measures for pricing different derivatives, as long as there exists at least one
measure Q that is an equivalent martingale measure for all products.

To see this, suppose that we have two derivatives on the spot with payoffs given
by the random variables X and Y, respectively. Let the prices at time zero be
CX ¼ EQX ½X� and CY ¼ EQY ½Y �, where we for the moment assume that the interest
rate is zero to simplify the argument. The probabilities QX and QY are equivalent
martingale measures. If there exists an equivalent martingale measure Q, such that
the price processes S, CX and CY , are all Q-martingales, then the market is arbitrage-
free. However, as long as Q is equivalent to P, it has to be equivalent to QX and QY
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as well. Furthermore, by the no-arbitrage theory we must have that CX ¼ EQ½X� and
CY ¼ EQ½Y �. This implies that

EQX X
dQ
dQX

� �
¼ EQX ½X� ;

and

EQY Y
dQ
dQY

� �
¼ EQY ½Y � :

These two equalities put strong conditions on the range of possible probabilities
QX , QY and Q.

In the case of power markets, the situation is completely different since the
probability measure used to price futures can theoretically be completely detached
from the measure pricing options on futures. As we have already argued, the power
spot price cannot be traded in the normal financial sense, and it works as a reference
index for the settlement of futures contracts. With this view at hand, the pricing
measure Q used to derive the futures price on the spot does not need to be an
equivalent martingale measure, but is required only to be an equivalent measure.
However, the futures is a tradeable asset and its price dynamics must be a
Q-martingale in order for the market to be free of arbitrage opportunities. Pricing
using conditional expectation as in (2) ensures this by definition.

In a specification of the market, one would typically model the spot price
evolution using some stochastic process SðtÞ, and choose a parametric class of
equivalent probability measures Q. Based on a selected probability Q from this
class, the standard approach to price electricity futures is to define it as

Fðt; T1; T2Þ ¼ EQ
1

T2 � T1

ZT2

T1

SðtÞdt jF t

2

4

3

5 : ð3Þ

Here, we consider a contract delivering electricity over the time interval ½T1; T2�,
and the contract is entered at time t� T1, with settlement at the end of the delivery
period T2. Note that the price is denoted in MWh, and therefore is normalized by
the length of the delivery period. This gives a theoretical swap price dynamics
which we next calibrate to the observed prices by fitting the parameters of the
probabilities Q. This will pin down a probability bQ under which we model the risk-
neutral futures price dynamics. Note that the risk-neutral dynamics of F is a bQ-
martingale. Since by construction bQ is equivalent to P, we can also (in principle)
derive the market dynamics of the futures. Note that in general bQ is not a proba-
bility for which the spot price dynamics becomes a martingale after discounting.

In reality, the above procedure in specifying a probability bQ for pricing futures is
an approach to find a parametric representation of the price process Fðt; T1;T2Þ,
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where we calibrate to represent the risk premium in the market, i.e., to explain the
difference between the observed futures prices and the predicted average spot price.
The latter is calculated by relation (3) using Q ¼ P. Apriori there are two extreme
choices one can make on Q. First, ignoring the existence of a risk premium, one
could select Q ¼ P. Alternatively, assuming the electricity spot is tradeable, one
could force Q to be a martingale measure. Note that depending on the model for S,
one could have many possible martingale measures, so the latter choice is not
necessarily unique. Both alternatives are theoretically viable, but hardly reasonable
from the characteristics of electricity markets.

Our next problem is to price call and put options written on the futures. Fol-
lowing the standard no-arbitrage pricing framework discussed above, a first thought
would be to use bQ and compute the option price using this probability. To be more
specific, let us suppose that we have a call option with exercise time s� T1 written
on a swap with dynamics Fðt; T1; T2Þ given in (3) for the pricing measure bQ. The
price of this call at time t� s is

CðtÞ ¼ e�rðs�tÞ
EbQ maxðFðs; T1; T2Þ � K; 0Þ jF t½ � :

However, in general, there will exist several equivalent measures Q for which
t 7!Fðt; T1; T2Þ is a Q-martingale. In fact, since typically the power spot price
dynamics involves jump processes, the futures price will follow a jump dynamics as
well. Under certain conditions, such models admit the existence of a continuum of
equivalent martingale measures Q. In this case we pin down a pricing measure ~Q by
selecting it from a parametric class of equivalent martingale measures Q for
Fðt; T1; T2Þ. One could derive this probability by calibrating to observed option
prices in the market, or to appeal (partial) hedging arguments (see Cont and Tankov
2004 for a discussion of hedging and pricing in incomplete markets).

Note that finding ~Q for option pricing follows in principle the same scheme as
choosing bQ for the futures prices. The fundamental difference is that bQ does not
need to be a martingale measure for the spot price, whereas ~Q has to be a martingale
measure for the futures price. Both probability measures are equivalent to P. In the
next sections we shall estimate a particular two-factor model to spot price data
collected from the EEX, and apply this to futures pricing based on a class of
probabilities defined by Esscher transformation. Using option price data, we shall
argue that the spot-futures probability bQ is not the right probability for pricing
options on the futures, pointing towards ~Q 6¼ bQ.

Our analysis is not restricted to power markets only. In the weather markets, like
the temperature market at the Chicago Mercantile Exchange (CME), futures on
temperature indices measured in various cities world-wide are traded. In addition,
plain vanilla call and put options on these futures are traded. The underlying “spot”
price here is the temperature in a given city, for example Chicago itself. Given a
stochastic model for the temperature SðtÞ, one can derive the resulting futures price
written on an index of the temperature. Typically, one chooses to price using a
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conditional expectation analogous to (3), where a pricing measure is selected.
Obviously, temperature itself is not a tradeable commodity, and we can use the
same argumentation as above to defend choosing the pricing probabilities which are
not necessarily martingale measures for the temperature dynamics. On the other
hand, the futures contracts are tradeable financial assets, and to price the options
with these as underlying, we need to use a probability measure Q which turns the
futures price into a Q-martingale. As in the case of power, the futures pricing
measure bQ does not need to be the same as the option pricing measure ~Q. We note
in passing that CME also organize a market for precipitation derivatives based on
snow and rainfall indices in some cities in the US. Further, there has been trials to
create an organized market for wind futures and options at the now closed US
Futures Exchange. Here our discussion makes sense as well.

3 The Spot Price Dynamics and Implied Futures Prices

We consider a simple arithmetic two-factor spot price dynamics in the spirit of
Lucia and Schwartz (2002). The occurrence of negative spikes at the EEX, and,
even more, the observation that these spikes may even lead to negative prices,
indicate that an arithmetic model may be suitable. To this end, suppose that SðtÞ
follows the dynamics

SðtÞ ¼ KðtÞ þ XðtÞ þ YðtÞ : ð4Þ

Here, K : ½0; ~T� 7!R is a measurable deterministic function, modelling the mean
seasonal variation in spot prices. Usually, this function consists of a linear trend and a
periodic function (a linear combination of sines and cosines, with different fre-
quencies), and as such is a smooth function. The base component XðtÞ in the spot
price dynamics is assumed to be non-stationary and defined to be a Lévy process, i.e.,

dXðtÞ ¼ dL1ðtÞ : ð5Þ

In Lucia and Schwartz (2002), it is assumed that L1ðtÞ ¼ ct þ rBðtÞ with c and r
being constants and BðtÞ a Brownian motion. The volatility r is naturally assumed
to be positive. One may think of the base component as stochastic variations from
market activity as well as long term effects like inflation in fuel prices and limited
resources, as well as entry of new sources of energy (like renewables). As it will
turn out from our empirical analysis of EEX spot price data, a drifted Brownian
motion is unsuitable for modelling the true dynamics of the non-stationary term,
and a Lévy process is much more appropriate.

Typically in power markets spot prices may exhibit random shocks due to
imbalances in supply and demand. These shocks are seen as spikes in the price path,
imposed from an unexpected increase in demand due to colder weather, say, or shut
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down of a major power plant yielding a drop in supply. The prices will in both these
cases exhibit a major price jump upward, which is followed typically by a strong
decline since demand will be significantly reduced by higher prices, or expensive
power production plants are ramped up (like coal-fired plants in Denmark in the
NordPool area). In the EEX market one observes many negative spikes, which is
caused by wind power mainly. By political legislation, wind power and other
renewable energy sources have priority into the electricity grid, and hence an
unexpected increase in wind power production (due to more wind where the farms
are…) may create bigger than expected supply (since it takes time to ramp down or
adjust other power plants fueled by gas and coal or producing nuclear energy). In
fact, one observes negative prices in the EEX market due to over-supply, where
some producers choose to pay for power consumption rather than shut down their
production.

From this discussion, we see that there is ample evidence for a mean-reverting
short-time factor of the form

dYðtÞ ¼ �gYðtÞdt þ dL2ðtÞ : ð6Þ

Here, the constant g[ 0 is expected to be rather big, since spikes created by the
Lévy process L2ðtÞ are reverting fastly back to normal price levels. We suppose that
L2ðtÞ may have both positive and negative jumps, i.e., L2ð1Þ is distributed on R.

Notice that in Lucia and Schwartz (2002), both an arithmetic and geometric two-
factor model were analysed theoretically and empirically on NordPool data. In their
approach, the second factor Y was also assumed to be driven by a Brownian motion.
We believe that a jump factor for the noise is more appropriate in order to explain the
sudden spikes in prices, exhibiting a jump like behaviour in the price path. Also, most
empirical studies of power spot prices point strongly towards non-Gaussianity in
prices, and hence the need to use other processes than the Brownian motion to drive
the dynamics (see discussion in Benth et al. 2008). We remark that Lucia and Sch-
wartz (2002) let the short and long term factors correlate through their driving noise.

We denote L ¼ ðL1; L2Þ, and assume that L is a bivariate Lévy process with
cumulant (log-characteristic function) defined by

wðxÞ ¼ il0x� 1
2
x0Cxþ

Z

R
2

eix
0z � 1� ix0z1ðjzj � 1Þ‘ðdzÞ ; ð7Þ

with x ¼ ðx; yÞ0 2 R
2, l 2 R

2, C a symmetric non-negative definite 2� 2 matrix
and ‘ðdzÞ a Lévy measure on R

2nf0g. Here x0 denotes the transpose of the vector,
and i ¼ ffiffiffiffiffiffiffi�1

p
is the imaginary unit. In the case of independence between L1 and L2,

we can express the cumulant as a sum

wðx; yÞ ¼ w1ðxÞ þ w2ðyÞ
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where wi, i ¼ 1; 2 are cumulants of the univariate Lévy processes L1 and L2. Our
general model allows for a dependency between L1 and L2, although we shall
assume independence in the empirical study on EEX data below.

In Benth et al. (2011) they use a more general model. The stationary short time
variations are modelled as a continuous-time autoregressive moving average
(CARMA) process, where the driving process L2 is an α-stable Lévy process. As it
includes mean reversion, a CARMA model is comparable to the standard approach
of commodity spot price modelling, i.e., to describe the spot as a sum of several
Ornstein–Uhlenbeck processes with different speeds of mean reversion and sto-
chastic drivers (see Benth et al. 2008). In Benth et al. (2011), a CARMA(2,1)
dynamics is proposed and fitted empirically to EEX spot price data. Such a
dynamics is similar to a two-factor model, with each factor being an Ornstein–
Uhlenbeck process. Although we find strong indications of a two-factor dynamics
in our empirical study, we simplify the considerations here to a one-factor model as
a first order approximation of the short-term factor. This makes the fitting of data
significantly easier, and is in line with the more classical two-factor model of Lucia
and Schwartz (2002). Moreover, it turns out that we can do well with a much more
regular Lévy process than the α-stable to model the random fluctuations.

Our first concern is to introduce a parametric class of equivalent probabilities
Q which is appropriate for pricing swaps. For h ¼ ðh1; h2Þ 2 R

2, define the
equivalent probability Qh, where the density process of Qh with respect to P is

dQh

dP
jF t

¼ expfhLðtÞ � wð�ihÞ tg : ð8Þ

In order for this to be well-defined, we must of course assume exponential
integrability conditions on Lð1Þ. Hence, suppose from now on that there exists a
constant c[ 0 such that

Z

R
2

ex
0z ‘ðdzÞ\1 ; ð9Þ

for all jxj � c. This ensures finite exponential moments for Lð1Þ up to order c.
The probability Qh parameterized by h is known as the Esscher transform of

L (see Benth et al. 2008). The probability Qh is equivalent to P by definition of the
Radon-Nikodym densities. We emphasize, however, that we do not demand Qh to
be a martingale measure, in the sense that the power spot dynamics becomes a
Qh-martingale (the reader should note that this is technically impossible anyway
with the Esscher transform on an Ornstein-Uhlenbeck process, see Benth and
Sgarra (2012)). The reason is the non-storability of the spot which makes it non-
tradeable, i.e., one cannot create portfolios with spot investments in electricity.
Once purchased, it must be consumed. The parameter h is restricted to the subspace
of R2 defined by jhj � c.
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In the next Lemma we characterize the process L under Qh:

Lemma 3.1 The process L is a Lévy process with respect to Qs with cumulant
function

wQh
ðxÞ ¼ wðx� ihÞ � wð�ihÞ :

Hence, the drift is

lþ h0C þ
Z

jzj\1

ðehz � 1Þz‘ðdzÞ

and the Lévy measure

‘QhðdzÞ ¼ ehz ‘ðdzÞ ;

while the covariance matrix C remains the same.

Proof Using Bayes’ Theorem along with the density process of Qh and the inde-
pendent increment property of the Lévy process, yield that the conditional log-
characteristic function of LðtÞ given F s for t� s� 0 is

lnEQs eix
0LðtÞ jF s

h i
¼ wðx� ihÞ � wð�ihÞð Þðt � sÞ :

Hence, L is a Lévy process under Qh as well. By a direct computation, we find the
drift and the Lévy measure as claimed. □

Note that if we have a (bivariate) drifted Brownian motion as Lévy process, i.e.,
‘ðdzÞ ¼ 0, then the Esscher transform is simply a Girsanov transform of the
Brownian motion with a constant parameter h. For Lévy processes with jumps, the
Lévy measure is exponentially tilted by the Esscher transform. We may interpret
this as a rescaling of the size and intensity of jumps.

We remark that the expected value of Lð1Þ under Qh is given by

Eh Lð1Þ½ � ¼ �irwð�ihÞ ;

where r is the gradient and Eh½�� is the expectation operator with respect to the
probability Qh. Thus, the Lévy process ~LðtÞ ¼ LðtÞ þ irwð�ihÞt becomes a mar-
tingale under Qh as it has expectation zero. This means in particular that under Qh,
the dynamics of X and Y are, respectively,

dXðtÞ ¼ �iwxð�ihÞdt þ d~L1ðtÞ ð10Þ

and
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dYðtÞ ¼ �iwyð�ihÞ � gYðtÞ� �
dt þ d~L2ðtÞ : ð11Þ

Here, we have used the notation wx and wy as the partial derivatives of w with
respect to the two variables x and y, respectively. The solution YðsÞ at time s� t,
conditioned on YðtÞ, of this Ornstein–Uhlenbeck process is

YðsÞ ¼ YðtÞe�gðs�tÞ þ �iwyð�ihÞ
g

ð1� e�gðs�tÞÞ þ
Zs

t

e�gðu�tÞ ~L2ðduÞ : ð12Þ

Next, we consider pricing of swaps in this market. Let us start with analysing the
implied swap price dynamics for the arithmetic model. The following result holds:

Proposition 3.2 The swap price Fðt; T1; T2Þ is given by

Fðt; T1; T2Þ ¼�KðT1; T2Þ þ XðtÞ þ YðtÞ�gðt; T1; T2Þ

� 1
2
iwxð�ihÞðT2 � T1Þ � iwxð�ihÞðT1 � tÞ þ �iwyð�ihÞ

g
ð1� �gðt; T1; T2ÞÞ

;

where

�gðt;T1; T2Þ ¼ 1
T2 � T1

ZT2

T1

e�gðs�tÞ ds

and �KðT1; T2Þ is the average value of the seasonality function KðsÞ over the interval
½T1; T2�.

Proof From the expression in (10), we find (for s� t)

EQh ½XðsÞjF t� ¼ XðtÞ � iwxð�ihðs� tÞ ;

after appealing to the independent increment property of the Qh-Lévy process ~L1
with zero mean, and the F t-measurability of XðtÞ. Similarly, from the independent
increment property of the Qh-Lévy process ~L2, having mean zero, we find from (12)

EQh ½YðsÞjF t� ¼ YðtÞe�gðs�tÞ � iwyð�ihÞ
g

ð1� e�gðs�tÞÞ:
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Since

Fðt; T1; T2Þ ¼ 1
T2 � T1

ZT2

T1

KðsÞ þ EQh ½XðsÞ þ YðsÞjF t�
� �

ds

the result follows after using the Fubini Theorem. □

We note that �g is the average value of the “volatility function” expð�gðs� tÞÞ
over the delivery period ½T1; T2�, and takes the form

�gðt; T1; T2Þ ¼ 1
gðT2 � T1Þ e�gðT1�tÞ � e�gðT2�tÞ

� �
; ð13Þ

or,

�gðt; T1; T2Þ ¼ e�gðT1�tÞ 1
gðT2 � T1Þ 1� e�gðT2�T1Þ

� �
: ð14Þ

In the representation (14), T1 � t is time left until start of delivery, and T2 � T1 is
length of delivery. We recognize the exponential damping factor expð�gðT1 � tÞÞ
as the Samuelson effect on the volatility, i.e., the volatility of the spot is increasing
as time to start of delivery is decreasing. The classical Samuelson effect says that
the volatility of the futures price is exponentially increasing in time to maturity to
the spot volatility (see Samuelson 1965, Benth et al. 2008). We note here that
�gðt; T1; T2Þ is not converging to the “spot volatility”, being one in this context, but
to a value less than this. The delivery period creates this violation of the classical
Samuleson effect. It is natural from a financial and empirical point of view that the
volatility of the electricity futures price is not converging to that of the spot as the
futures price is the average of the spot over a delivery period.

We derive the dynamics of F in the next proposition

Proposition 3.3 The Qh dynamics of the swap price is

dFðt; T1; T2Þ ¼ d~L1ðtÞ þ �gðt; T1;T2Þd~L2ðtÞ :

Proof Since �g0ðt; T1;T2Þ ¼ g�gðt; T1; T2Þ, the result follows after applying the Itô
formula for jump processes and the Qh-dynamics of X and Y . □

As is apparent from the definition of Fðt; T1; T2Þ, it is a Qh-martingale process
for t� T1. Thus, it defines an arbitrage-free model for the stochastic evolution of
electricity futures prices.
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4 An Empirical Study of EEX Spot and Futures Prices

In this section we want to estimate the parameters in the spot model, and calibrate it
to futures prices where we derive the market price of risk h. It turns out that a joint
estimation of spot and futures is most efficient, where one can make use of the
asymptotic behaviour of futures prices to filter out the non-stationary factor in the
spot. This approach is analogous of the calibration procedure in Schwartz and
Smith (2000), with a more sophisticated version of it found in Benth et al. (2011).

The following asymptotic result of the futures price with respect to time to
delivery plays a crucial role in the estimation algorithm.

Proposition 4.1 It holds that

lim
T1�t!1

Fðt; T1; T2Þ � �KðT1; T2Þ �Wðt; T1; T2; hÞ � XðtÞ� � ¼ 0 ;

where

Wðt; T1; T2; hÞ ¼ � 1
2
iwxð�ihÞðT2 � T1Þ � iwxð�ihÞðT1 � tÞ � iwyð�ihÞ

g
:

Proof Recalling the explicit dynamics of Fðt; T1; T2Þ in Proposition 3.2, the result
follows after observing that expð�gðT1 � tÞÞ ! 0 as T1 � t ! 1. □

Hence, asymptotically the futures price behaves like

Fðt; T1; T2Þ � �KðT1; T2Þ þWðt; T1; T2; hÞ þ XðtÞ ; ð15Þ

for T1 � t ! 1. This means that in the long end of the futures market, the prices
fluctuate as the non-stationary factor XðtÞ plus some non-stochastic adjustment term
�KðT1; T2Þ þWðt; T1; T2; hÞ involving the market price of risk h. From these con-
siderations we can derive an algorithm for estimating the model. It goes as follows.

For a fixed delivery period ½T1;T2�;
(1) Fit a seasonal function KðtÞ to the spot prices SðtÞ:
(2) Fit the autocorrelation function of YðtÞ to the deseasonalized spot prices to

have an apriori estimate of g. Use this g to find a threshold bT for which
“T1 � t ¼ 1”, i.e., how big should T1 � t be for the asymptotic behaviour of
F in (15) to be acceptable.

(3) Subtract KðT1; T2Þ from the observed futures prices to “deseasonalize” them.
Call this time series ~Fðt; T1; T2Þ.

(4) Observe that we have for T1 � t� T̂
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~Fðt; T1; T2Þ � cðh; T1; T2Þ � iwxð�ihÞðT1 � tÞ þ XðtÞ ;

where

cðh;T1; T2Þ ¼ � 1
2
iwxð�ihÞðT2 � T1Þ �

iwyð�ihÞ
g

:

Hence, for all observed futures prices Fðt; T1; T2Þ for which T1 � t� T̂ , esti-
mate the “constants” cðh; T1; T2Þ and �iwxð�ihÞ by linear regression of ~F with
respect to T1 � t.

(5) Using the estimated regression coefficients ĉ and â, we filter out XðtÞ from the
observations,

~Fðt; T1; T2Þ � ĉ� âðT1 � tÞ

for all T1 � t� T̂ .
(6) Subtract the filtered data series XðtÞ from the deseasonalized spot prices. This

results in a time series which is modelled by YðtÞ. Re-estimate g based on
linear regression of YðtÞ against Yðt � 1Þ.

(7) Fit a Lévy process L to the residuals of the Y process and the time series of the
X process obtained above. From the fitted Lévy process L, we obtain the
cumulant w.

(8) For the given cumulant w, find the estimated market price of risk h by solving
the system of equations

â ¼ �iwxð�ihÞ ;

ĉ ¼ � 1
2
iwxð�ihÞðT2 � T1Þ þ

�iwyð�ihÞ
g

:

This calibration algorithm provides us with a full specification of both the spot
and the futures price model, including the estimation of the market prices of risk
h ¼ ðh1; h2Þ. We next apply it to spot and futures price data collected from the
European Energy Exchange (EEX).

We have available daily Phelix base load spot prices from 02.01.2006 to
19.10.2008, constituting altogether 1,022 daily observations. We remark that we
include weekend prices as we are going to apply base load futures prices in our
estimation routine. These futures are settled on the spot prices including the
weekends. To the spot price data, we fit the seasonality function taken from
Barndorff-Nielsen et al. (2013),

KðtÞ ¼ n0 þ n1 cosð
s1 þ 2pt
365

Þ þ n2 cosð
s2 þ 2pt

7
Þ þ n3t þ n41SatðtÞ þ n51SunðtÞ :
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This function takes annual and weekly seasonality into account along with a
trend. As prices on weekends are in general lower than during the rest of the week
due to a different demand situation, we introduce additionally a weekend-correction
to capture these effects. Here 1SatðtÞ and 1SunðtÞ are equal 1, if the weekday cor-
responding to t is a Saturday and Sunday, respectively.

A non-linear least squares estimation on the spot data yields the parameters
reported in Table 1. Figure 1 (left) displays the spot price data and its estimated
seasonality function. The estimated seasonality follows the general movements of
the spot, on a weekly pattern as well as a yearly one.

Next we continue the calibration algorithm with filtering the non-stationary
factor X from the futures data with long time to delivery. For this purpose we use
base load futures contracts with 1 month delivery period from the EEX, for which
we have available price data for the same dates as the spot (weekends and holidays
are excluded, as there is no trade in futures).

We first need to determine the threshold T̂ for which the futures prices are
asymptotically given by (15). This depends, obviously, on the value of g, the speed of
mean reversion in the factor process Y. We can estimate this parameter from the
autocorrelation function of Ywhich is known to be exponentially decaying at the rate
g (see Benth et al. 2008). However, at this point in the estimation procedure we have
not yet filtered the time series of Y from the spot data, so the empirical autocorrelation
function is unknown to us. Therefore, we do a rough estimation of g by looking at the
empirical autocorrelation of the deseasonalized spot, which is modelled by
XðtÞ þ YðtÞ. We observe a decaying autocorrelation structure, and fit an exponen-
tially decaying function to the first five lags obtaining the pre-estimate ĝ ¼ 0:1781.
We derive T̂ ¼ 16 as the threshold when YðtÞ�gðt; T1; T2Þ � 1 using YðtÞ being three
times the standard deviation of spot price data. Note that we expect the presence of
X to make the beta smaller than the “true” one. A larger value for g would lead to a
smaller threshold. Hence, our decision to apply T̂ ¼ 16 is a conservative choice.

We construct a time series of futures prices with “infinite” time to delivery from
the base load contracts as follows: if the time to delivery is more than 16 days, we
choose the futures which has the first coming month as delivery period. Otherwise,
we switch to the contract with delivery in the following month. That is, we use the
price series of front-month contracts as long as these are farther than 16 days to
delivery, and switch to the next month when the front-month contracts have less
than 16 days to delivery. Like this we make sure that for each date we have a
futures price with time to delivery of more than 16 days. These prices will not, at
least approximately, have any influence from the stationary component Y. As the
futures are not traded on weekends and holidays, we use as a substitute for missing

Table 1 Estimated parameters of the seasonal function

n0 n1 n2 n3 n4 n5 s1 s2

738.733 4.360 −11.716 0.020 1.000 1.000 −13637.760 40.401
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values at the weekend the price of the preceeding Friday. On holidays, we use the
price of the last trading day before the holidays.

To deseasonalize the constructed futures price series we subtract the average
seasonality of the delivery period. We have fitted the seasonality function to data
until October 2008, such that we take October 2008 as the last delivery period and
let our futures price series end at 14.09.2008. A linear regression of this time series
delivers the estimates â ¼ 0:030 and ĉ ¼ 3:406. We filter the non-stationary time
series XðtÞ from the futures prices corresponding to step (5) in the algorithm, and
afterwards retrieve the stationary time series YðtÞ from the spot prices as in step (6).
The plot on the right in Fig. 1 shows the filtered factor XðtÞ along with the des-
easonalized spot prices. It seems to reflect a long-term stochastic trend in the price
data.

Next we estimate the mean reversion parameter g. The autocorrelation function
of the time series YðtÞ is plotted in Fig. 2. Re-estimating g over the first five lags
results in ĝ ¼ 0:359. The initial decrease of the autocorrelation function seems to be
captured well by using an exponential function. However, it decays too rapidly for
larger lags. Including more lags to fit the autocorrelation function (i.e., g) results in
a poor fit in the first lags. To get a better fit over all lags, one could use two (or
more) exponential components. This would mean that we model the factor Y by two
or more Ornstein–Uhlenbeck processes, or by a higher-order CARMA model.
Benth et al. (2011) indicate that one should indeed use a higher-order CARMA
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Fig. 1 Left empirical spot price data together with the estimated seasonality function. Right
deseasonalized spot price data with the filtered data series XðtÞ
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model. However, such models are much more complex to estimate, and we apply
the one-factor assumption on Y here as a first approximation of the dynamics.

The next step is to fit a bivariate Lévy process L ¼ ðL1; L2Þ to the time series
XðtÞ and YðtÞ. For simplicity, we assume that L1 and L2 are independent, meaning
that there is no dependency between the short-term and long-term price fluctuations.
In the Schwartz–Smith model (see Schwartz and Smith (2000), or Lucia and
Schwartz (2002) for the case of electricity) L is assumed to be a bivariate Brownian
motion. However, the Gaussian assumption on the increments DXðtÞ is not realistic,
and we propose to fit the dynamics of X with a normal inverse Gaussian (NIG) Lévy
process, i.e., a Lévy process with NIG distributed marginals. The NIG distribution
seems to be a good choice for modelling the residuals of YðtÞ as well.

The NIG distribution is a four parameter family of distributions successfully
applied to model the log returns of financial data. For its applications to finance and
a detailed probabilistic analysis of the NIG family, we refer the interested reader to
Barndorff-Nielsen (1998). Assuming L1ðtÞ to be a NIG Lévy process, its cumulant
(i.e., the logarithm of the characteristic function) function at time 1 is given by

WðxÞ ¼ df
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � b2

q
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � ðbþ ixÞ2

q
g þ lix ; ð16Þ

for the four parameters l, b, d[ 0 and a[ 0. The skewness of the NIG distribution
is described by b, where b[ 0 means a positively skewed distribution, and b\0
negatively skewed. For a symmetric NIG distribution, i.e., when b ¼ 0, l is the
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Fig. 2 Autocorrelation function of Y(t)
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mean. Otherwise, l is the location parameter. d is the scale and a the tail heaviness
parameter. Note that the NIG distribution has semi-heavy tails, with the normal
distribution as a limiting case. We easily find the expectation from (16) as

j1 ¼ db
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � b2

p þ l :

The estimated parameters of L1ð1Þ based on maximum-likelihood are given in
Table 2. We remark in passing that the NIG distribution has been applied in studies
of energy prices in Benth and Šaltytė-Benth (2004) and Börger et al. (2009).

We fit another NIG Lévy process L2 to the residuals of Y. The estimates are
reported in Table 2. The estimated densities of L1ð1Þ and L2ð1Þ are displayed
together with the empirical ones in Fig. 3. The fit seems to be good, and we find the
NIG distribution as a satisfactory choice for modelling L1 and L2. Recall that we
assumed independence of L1 and L2. Empirically, the correlation between the data
series for L1 and L2 is given by �0:16. A more realistic model should take this into
account, which requires an analysis of the dependency structure. We relegate this to
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Fig. 3 Empirical density of L1 (left) and L2 (right) as well as the fitted NIG density (dashed line)

Table 2 Estimated NIG parameters of L1 and L2

a b d l

L1 0.0946 −0.0099 0.3136 0.02421

L2 0.0402 0.0071 14.3407 −2.9488
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future studies. From the estimates in Table 2 we observe that the NIG distributions
for L1 and L2 are close to symmetric.

Following step (8), the market price of risk h ¼ ðh1; h2Þ is given by

h1 ¼
a1

â�l
dffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðâ�l1
d1

Þ2 þ 1
q � b1 ð17Þ

h2 ¼ a2Kffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K2 þ 1

p � b2 ; ð18Þ

where

K ¼ b2
d2

ĉ� 1
2
âðT2 � T1Þ � l2

b2

	 

:

Here, the subscript in the parameters a; b; d and l refer back to L1 and L2. Using
the estimates for the NIG distributions, we can derive the values of h1 and h2. These
are reported in Table 3 along with the expected values of L1 and L2 with respect to
the probabilities P and the fitted Qh. We note that the market price of risk is
positive, and that the expected value of L1 and L2 are moved from being negative
under P to positive under Qh. The fitted market price of risk is shifting the distri-
bution of L1 and L2 towards the right, roughly meaning that we get more positive
jumps and less negative. Furthermore, quite nicely the NIG distribution is preserved
under a constant Esscher transform. Hence, L is a bivariate NIG Lévy process both
under P and Qh, where only the skewness parameter is different under the two
measures.

Let us comment on the risk premium implied by our estimated model. The risk
premium is defined as the difference between the futures price and the predicted
average spot price over the delivery period. In mathematical terms,

RPðt; T1; T2Þ ¼ Fðt; T1; T2Þ � E
1

T2 � T1

ZT2

T1

SðtÞdt jF t

2

4

3

5 : ð19Þ

From Proposition 3.2 we find

Table 3 The market price of risk derived from the fitted NIG parameters together with the
expectation of L1 and L2 under P and Qh

i hi EP½Lið1Þ� Eh½Lið1Þ�
1. 0.0115 −0.0087 0.0296

2. 0.0010 −0.3583 0.0211
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RPðt; T1; T2Þ ¼ 1
2
ðEh½L1ð1Þ� � E½L1ð1Þ�ÞðT2 � T1Þ

þ ðEh½L1ð1Þ� � E½L1ð1Þ�ÞðT1 � tÞ
þ ðEh½L2ð1Þ� � E½L2ð1Þ�Þ 1g ð1� �gðt; T1; T2ÞÞ:

The non-stationary factor gives a linear contribution in time to delivery T1 � t,
while the stationary factor gives an exponential shape and converges fastly to a
constant when T1 � t ! 1. A plot of the risk premium for the estimated model
parameters is shown in Fig. 4. As a result of the positive market price of risk, the
risk premium also becomes positive. This tells us that the consumers in the market
are willing to pay a premium for locking in electricity prices in the futures market.
Note that we use data from the relative short end of the market, using the front-
month (or second month) contracts.

5 Pricing of Options on Futures

At EEX, the market for options is rather illiquid, however, there exists traded
contracts. In 2008, 12 options on baseload futures with delivery period 1 month
were traded, 11 of them in the period we consider. Out of these 11, four are call
options, and seven puts. We use these for further analysis and discussion.

In Tables 4 and 5 we list the calls and puts with their main characteristics. We
have decided to label the contracts by Ci, i ¼ 1; 2; 3; 4 for the calls and Pi,
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i ¼ 1; . . .; 7 for the puts. Recall that the exercise time s of the options is four trading
days before the delivery period of the underlying futures starts. The historical data
available from the EEX provides settlement prices for traded option contracts. For
all derivatives traded, a settlement price is established on all exchange trading days.
In the case that a settlement price cannot be determined on basis of the order book
situation, a so-called Chief Trader Procedure applies, where all trading participants
can take part with a representative. The EEX Market Supervision makes a stand-
ardised form available for all those trading participant volunteering to specify a
market price for the respective derivatives. The settlement price is then determined
as the average of the expectations of the market participants. We note that options
on peakload futures are not traded at all at EEX, explaining why we use baseload
spot data in our empirical analysis above.

We first look at the “classical” approach to price options on futures in com-
modity markets, namely pricing using the Black-76 formula (see Black 1976). For
the convenience of the reader, we state the Black-76 formula in a Proposition.

Proposition 5.1 Suppose the risk-neutral futures price dynamics is a geometric
Brownian motion

dFðt; T1; T2Þ
Fðt; T1; T2Þ ¼ rdBðtÞ ;

for a constant r[ 0. Then, the price at time t� s of a call option with strike K and
exercise time t� s� T1, is given by CB76ðt;Fðt; T1; T2ÞÞ with

Table 4 Traded call options in 2008 with delivery period 1 month

Contract Trading day Delivery period Strike Futures price Settlement price

C1 06.02.2008 Mar 2008 57 56.81 1.900

C2 28.01.2008 Mar 2008 57 57.00 2.270

C3 15.01.2008 Feb 2008 75 70.50 1.065

C4 09.01.2008 Feb 2008 74 68.50 0.928

Table 5 Traded put options in 2008 with delivery period 1 month

Contract Trading day Delivery period Strike Futures price Settlement price

P1 08.07.2008 Aug 2008 74 74.77 3.233

P2 08.07.2008 Aug 2008 75 74.77 3.835

P3 03.07.2008 Aug 2008 73 78.00 1.989

P4 08.04.2008 May 2008 55 55.35 1.522

P5 04.03.2008 Apr 2008 58 58.70 1.911

P6 28.02.2008 Apr 2008 58 61.75 0.955

P7 08.01.2008 Feb 2008 65 69.00 1.179
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CB76ðt; xÞ ¼ e�rðs�tÞ½xUðd1ðxÞÞ � KUðd2ðxÞÞ� ;

for U being the cumulative standard normal distribution function, and

d1ðxÞ ¼
ln x

K

� �þ 1
2 r

2ðs� tÞ
r

ffiffiffiffiffiffiffiffiffiffi
s� t

p ;

d2ðxÞ ¼ d1 � r
ffiffiffiffiffiffiffiffiffiffi
s� t

p
:

In the Black-76 formula, one boldly assumes the futures price dynamics to be a
geometric Brownian motion, a dynamics which is far from the one we have esti-
mated to the electricity futures prices at the EEX. The volatility r is also constant,
an assumption that is not likely to be true. Based on the historically estimated
volatility of the futures contracts in question, we can price the call options. The
Black-76 prices are reported in Table 6 along with the actual settlement prices as
quoted on the EEX. Appealing to the put-call parity, we report the put prices in
Table 7. In both tables, we have also reported the historical volatility r used in the
Black-76 formula, as well as the implied volatility so that Black-76 matches
the settlement price. We estimate the historical volatility of the logreturns of the
underlying futures from the last month of daily price data. Furthermore, we choose
r ¼ 5% which is about the average yearly Euro LIBOR rate in 2008. We find that
the price of all options are substantially underestimated by Black-76. Due to the low

Table 6 Black-76 pricing of the call options

Contract Settlement price Black-76 Mispricing (%) Hist. vol. Impl. vol.

C1 1.900 0.464 −76 0.1046 0.3770

C2 2.270 0.725 −68 0.1100 0.3560

C3 1.065 0.000 −100 0.0788 0.5030

C4 0.928 0.000 −100 0.0821 0.4450

Table 7 Black-76 pricing of the put options

Contract Settlement price Black-76 Mispricing (%) Hist. vol. Impl. vol

P1 3.233 0.693 −79 0.1491 0.521

P2 3.835 1.158 −70 0.1491 0.532

P3 1.989 0.055 −97 0.1496 0.509

P4 1.522 0.177 −88 0.0679 0.357

P5 1.911 0.295 −85 0.1014 0.394

P6 0.955 0.001 −100 0.0797 0.366

P7 1.179 0.000 −100 0.0842 0.437
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volatility, those options that are far out of the money have a Black-76 price being
essentially 0 (P6 and P7, and C3 and C4). The implied volatility becomes very high
compared to the historical volatility. Indeed, the historical volatility is in the modest
range of 8–11 % for the underlying futures of the call, whereas the implied vola-
tilities are estimated to be from 35 to 50 %. The mispricing is rather dramatic, as the
percentages ranging above 70 % tells. One might be tempted to speculate that the
market is adding a huge risk premium for effects like illiquidity of the options and
non-normality of the futures price dynamics. The issuer runs a big risk selling call
options, since it is difficult to turn around the position in the option market.
However, the underlying future is reasonably liquid, so delta hedging is possible.
This removes some of the liquidity risk for the issuer.

One can in theory create synthetic investment strategies mimicking to a large
extent the payoff of a call or put option. This could be used in order to exploit
potential arbitrages in the option market. However, if the futures dynamics is not a
geometric Brownian motion, there will be a large residual error in such strategies,
which theoretically can be made perfect by delta hedging in the Black-76 frame-
work. The empirical study of spot and futures pricing in the previous Section
strongly points towards non-Gaussian models, hence ruling out this possibility.

In any case, the conclusion so far is that Black-76 in its simplest form is
inadequate for pricing of options in the EEX market. As our proposed futures price
dynamics is far more sophisticated than a simple geometric Brownian motion, we
now move on to analyse the implied option prices from this model with the hope
that it can improve the situation.

The call option price is then given by

CðtÞ ¼ e�rðs�tÞ
EQ½Fðs; T1; T2Þ � K jF t� : ð20Þ

The pricing probability Q is an equivalent martingale measure for Fðt; T1; T2Þ,
and we let this be given by Qh. The Qh-dynamics of Fðt; T1; T2Þ is given by
Proposition 3 and Qh is determined through the market price of risk (17) from the
spot-futures analysis above. We evaluate the expectation through a Monte-Carlo
simulation. To simulate the Lévy processes L1 and L2 under Qh, we use that NIG-
Lévy processes are stable with respect to an Esscher change of measure. In fact, it
can be seen (see Benth et al. 2008) that if, for i ¼ 1; 2, Lið1Þ is NIG distributed
under P with parameters ai; bi; di and li, then the Lið1Þ is again NIG distributed
under Qh with the same parameters except the skewness, which becomes bi þ hi.

Based on a simulation of 1,000,000 paths we compute the option prices based on
the average payoff. To simulate the NIG distribution, we applied the algorithm
implemented in the R-package fBasics, which is based on the normal variance-
mean mixture of the NIG distribution.

The resulting numbers are reported in Tables 8 and 9. We have also included the
mispricing and computed the implied volatility of the simulated price using the
Black-76. From the tables, we see that the picture is more mixed, with both over and
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underpricing of the calls and puts. Moreover, at the first glance, the mispricing seems
to be less severe than in the case of Black-76, although admittedly still very big.

Our spot and futures price model includes non-Gaussian noise as both factors in
the spot are driven by an NIG Lévy process. Note that the futures price is depending
on the non-stationary factor directly, whereas the short-term factor is dampened and
negligible for contracts far from delivery. From our estimation procedure, the non-
stationary long-term factor is estimated from the futures prices, so if the market
would price according to our futures price dynamics with the given pricing measure
Qh, at least options with long time until exercise should be priced reasonably
accurate. Looking at C1 and C2, these have the longest time to exercise in our
sample of call options. However, the simulated option prices from our model for
these two contracts are approximately 50 % higher than the quoted prices. This
means that our model is pricing in too much risk. From the spot dynamics we
estimated positive market prices of risk which pushes the skewness of the NIG
distribution to more positive jumps. The more positive market price of risk, the
higher values of the options. Thus, it seems like the futures model inherits far too
much risk premium from the spot when it comes to option pricing. We reach the
conclusion that the option market is not including the same risk perception as the
one inherited from the spot in the futures market. This is a clear sign that a
completely different pricing measure Q is used in the option market than in the
futures pricing. Note that C1 and C2 are both (approximately) at-the-money, so a
big portion of the distribution of the futures is taken into account in the pricing.

The contracts C3 and C4 are far out-of-the-money and slightly closer to exercise
time than C1 and C2. Noteworthy is that the mispricing of these are significantly
less than for C1 and C2, being respectively −23 and 9 %. If we have based our

Table 8 Simulated prices of the call options

Contract Settlement price Simulated price Mispricing (%) Impl. vol.

C1 1.900 2.748 45 0.4820

C2 2.270 3.525 56 0.4882

C3 1.065 0.821 −23 0.4255

C4 0.928 1.006 9 0.4037

Table 9 Simulated prices of the traded put options

Contract Settlement price Simulated price Mispricing (%) Impl. vol.

P1 3.233 2.476 −23 0.4256

P2 3.835 2.964 −23 0.4239

P3 1.989 1.438 −28 0.4260

P4 1.522 2.397 57 0.5358

P5 1.911 2.659 39 0.5368

P6 0.955 1.889 98 0.5384

P7 1.179 1.376 17 0.4032

256 F.E. Benth and M.D. Schmeck



calculations of the call prices on the wrong risk premium, it will be more influential
far from exercise than close since we span out more of the risk the longer into the
future we simulate the futures price. Close to exercise, the misspecification of the
tails under the chosen Q will be relatively much smaller than when we move
futures. Maybe more importantly is that a smaller portion of the price distribution of
F is taken into account for these two out-of-the-money options than C1 and C2, and
hence a wrongly chosen Q matters less. This discussion conforms with the
observations above for C1 and C2.

Note that contract P6 is farthest from exercise among the put options, as well as
being out-of-the-money. This contract has the highest mispricing by our model. All
the other put contracts in our sample have shorter time left to exercise. P1, P2, P4
and P5 are all approximately at-the-money put options with almost the same time
left until exercise. The mispricing of these are significantly less than for P6. In fact,
for P1 and P2 our model gives a price �23% less than the settlement prices. P4 and
P5 are contracts on futures with delivery in the spring months May and April,
respectively. Temperature predictions may influence the futures price expectations,
as the spring may become colder or warmer than usual. We also note that it is the
left-tail of the futures price distribution that counts when pricing an out-of-the-
money put option. An underpricing can be the result of the distribution being
moved to the right by a positive risk premium.

P3 and P7 are out-of-the-money put options where the mispricing of our model
is rather modest (�28% and 17 %, respectively). P7 is the only put option written
on a futures with delivery in the winter period, namely February. For the calls C3
and C4, which also are written on February futures contacts, we observe a relatively
small pricing error. It seems like the model captures best the futures price evolution
in the winter term. We also remark that the poor fit of the autocorrelation of the
stationary factor Y may lead to wrong assessments of the spike influence. However,
we believe that this is to some extent compensated for by the good fit of the Lévy
process L2 using a NIG distribution.

All in all, it seems like the futures price dynamics based on the pricing measure
Qh implied by the spot-futures relationship provides a significantly better prediction
of option prices than Black-76. However, the prices are far from satisfactory, and
we find clear evidence that the risk-adjustments should be different than those given
by Qh. Based on our findings, we dare to conclude that another pricing measure ~Q
should be used for power option pricing, a pricing measure which attributes a
different loading on the distributions of the Lévy processes L1 and L2. In fact, based
on the differences between summer and winter contracts in the pricing analysis
above, one may suspect that such a measure change should incorporate seasonal-
ities as well. Furthermore, it may also account for the state of the futures price, so
that one can capture out-of and in-the-money option price differences better. One
can also think of pricing measures which not only changes the characteristics of the
jump processes L1 and L2, but as well change the dynamics. For example, it is
possible to define measures which change the speed of mean reversion of the
Y factor. This could for example lead to a slower risk-neutral speed of mean
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reversion, essentially saying that a spike lasts longer in a risk neutral context than
under the market probability.

As our futures price dynamics consists of two jump components, it gives rise to an
incomplete market model. The selection of risk neutral probabilities for pricing
options in such markets is frequently based on utility indifference pricing techniques
(see Rouge and El Karoui 2000). Such a method, which is based on a risk averse,
utility optimizing investor, leads to a partial hedging strategy of the option. The
utility indifference method is particularly useful when pricing options in illiquid
markets, where one is stuck with the option investment. Other approaches to pricing
is based on deriving optimal partial hedges, where the optimality criterion may be the
futures investment hedge which minimizes the variance of the hedging error (see
Cont and Tankov 2004). All these various approaches lead to a pricing measure Q. It
is of great interest and application to see whether such prices will explain the set-
tlement option prices in the EEX market, and whether our conjecture bQ 6¼ ~Q is true.

As we have mentioned earlier, the option market at the EEX is rather illiquid, and
a liquidity premium is naturally associated to the observed prices. This premium will
be part of the risk premium as we have estimated. Once bought or sold an option, one
might be stuck with the position taken until exercise or having to accept a significant
loss by reversing it. This will impact the settlement prices as buyers and sellers know
that it is difficult to get out of the position at a later time. On the other hand, the
underlying futures market is reasonably liquid, so any position can (in theory, at
least) be hedged to a certain degree. Considering our derived Black-76 prices, which
were consistently too high, one could speculate whether the sellers had to accept a
discount in prices due to illiquidity. However, for the much more realistic futures
price dynamics that we considered, the picture was more mixed with both over- and
underpricing. There is no doubt that a liquidity premium exists in the market, but it is
hard from our analysis to conclude anything on its size and structure. Moreover,
liquidity might also be an issue in the futures market, further complicating matters.

6 Conclusion

We have argued that in power markets one may use a probability measure bQ for
futures pricing based on spot modelling which can be different than the equivalent
martingale measure ~Q used for pricing options on the futures. There is no violation
of no-arbitrage pricing theory that bQ 6¼ ~Q, and the argument hinges on the fact that
electricity spot cannot be stored. Due to the non-storability, ~Q can be chosen as an
equivalent measure which is not necessarily turning the discounted spot dynamics
into a ~Q-martingale. On the other hand, bQ is an equivalent measure such that the
futures price becomes a bQ-martingale.

We introduce a two-factor model for the spot price dynamics being a general-
ization of the classical commodity model of Schwartz and Smith (2000). Both the
long-term and the short-term factors are driven by normal inverse Gaussian Lévy
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processes, a choice based on empirical arguments using data collected at the EEX.
The spot model allows for analytical futures pricing, where the Esscher transform
provides an parametric class of probability measures to model the risk premium.
We perform a joint estimation of the spot and futures, where the crucial step is to
apply long-dated futures contracts to filter out the non-stationary long-term factor of
the spot.

Applying Monte Carlo simulations we priced call and put option prices for our
proposed futures dynamics. We compared the simulated prices where we chose
bQ ¼ ~Q with observed option prices in the market. This led to a significant mis-
pricing, and we argued that the results pointed to the fact that bQ 6¼ ~Q. Our results
were benchmarked against the Black-76 prices using the historical volatility of the
underlying futures as input. The proposed spot-futures model was a clear
improvement over this in predicting option prices.

We did not suggest any probability bQ for the futures price which could remedy
the situation. There exists many potential approaches to produce such risk neutral
probabilities taken from the theory of derivatives pricing in incomplete markets.
But before setting off such a study, one should make the spot dynamics even more
sophisticated to take into account some defiance like the misspecification of the
autocorrelation structure of the stationary factor. CARMA processes could be a
choice here, or even more general Lévy semistationary processes. However, this
will require more advanced estimation procedures to fit to data. On the other hand,
such improvements will make the conclusions on option pricing and choice of risk
neutral measures less prone to model error. A further issue is to open for more
flexible pricing measures for the futures price, taking into account random changes
in the risk premium and impacts from fuels and weather.

Illiquidity of the power option markets is a clear issue which can question our
analysis. Power options are relatively little traded, but we believe that in the future
these markets will emerge as important one for hedging and speculation of power.
The results in our paper will hopefully provide an important guideline in the
challenges when pricing spot, futures and options simultaneously.
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Switching from Feed-in Tariffs
to a Tradable Green Certificate Market

Aitor Ciarreta, Maria Paz Espinosa and Cristina Pizarro-Irizar

Abstract Feed-in tariffs have been the key support system for electricity from
renewable sources in Spain and other European countries. However, given the
growing criticism of this incentive scheme mainly due to its financial burden, the
Spanish government has recently cancelled subsidies for any new electricity from
renewable sources (RD-l 1/2012 2012). Since tariffs do not benefit from market
signals, subsidies to some technologies may be either too high or too low to attain
the regulator’s objectives. Existing literature on tradable green certificates suggests
that a switch to a green certificates setup could be an efficient solution when
substantial investments in renewable energy are already in place and technologies
are at a mature stage. This chapter analyzes the implementation of a green certif-
icates scheme as an instrument to foster renewables. We solve a sequential game
where we analyze the interaction between the electricity pool and the tradable green
certificates market. We focus on the retailer regulation design that would give lead
to a decreasing green certificates demand and simulate the effect of such regulation
on the price of certificates.
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1 Introduction

New or emerging electricity from renewable sources (RES-E) is not profitable in a
free market, due to relatively high production costs, and support instruments are
hence introduced to help the penetration of renewable technologies (Menanteau
et al. 2003). This promotion seeks to improve market efficiency, internalize external
costs, accelerate investments in research and provide temporary incentives for early
market development as such new technologies approach commercial readiness
(Sims et al. 2003). Additionally, RES-E support systems increase the amount of
RES-E produced through the merit order effect, since electricity production from
conventional fossil-fuel sources (marginal plants) is then substituted by RES-E and
the wholesale price of electricity drops.1 However, the net effect on the consumer
price level will depend on the way in which the RES-E support system is financed
(Rathman 2007). The burden of RES-E deployment usually rests on final con-
sumers and the choice of the promotion instrument and how it is implemented is
crucial (Haas et al. 2011).

In this sense, RES-E has been promoted in some countries through feed-in tariff
(FIT) schemes, or its variant feed-in premium (FIP). Under this system RES-E
producers may sell their entire output at a guaranteed price that is set above the
wholesale market clearing price. This higher price allows the generators of some
renewable sources of energy to cover the higher costs of this type of energy and
stay in the market.

A different way of promoting green sources of energy is the creation of tradable
green certificate (TGC) markets. The regulator may create a demand for the
renewable energy through the distributors’ obligation to meet a specified share of
green energy. Green certificates, which are also referred to as renewable energy
certificates (REC), tradable REC (T-REC), tradable renewable certificates or credits
(TRC), renewable portfolio standards (RPS), green tickets or green tags, rely on
market mechanisms for resource allocation. These markets aim at the promotion of
green energy sources through the separation of electricity as a commodity (traded in
the wholesale market) from the ecological attributes of electricity (avoiding CO2

emissions, etc.), which are traded as a different product on the green certificate
market. Indeed, both markets are separated but there are strong interactions between
the determination of the price of the certificate, the price of the electricity and the
role of regulation (Jensen and Skytte 2002).

Comparing both systems in Europe, the FIT approach (price-based mechanism)
is generally more popular than the TGC approach (quantity-based mechanism), as it
guarantees the price and removes the risk from investors in renewable generation;
whereas the TGC scheme may involve higher uncertainties, due to market out-
comes, and investors consequently require higher payments (Neuhoff 2005).

1 For an analysis of the effect of renewable electricity production in the Spanish electricity market
see Ciarreta et al. (2012a, b) and for an analysis of the effect of regulation in the electricity prices in
Spain see Ciarreta and Espinosa (2012).
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This conclusion may partly rest on the European experience, where FIT regimes in
Germany or Spain outperformed the TGC scheme in other countries, such as the
United Kingdom (Buttler and Neuhoff 2008). However, it is argued that FIT may
serve mainly to shift the risk to other agents (i.e. consumers) but does not reduce it
to society as a whole. Moreover, the problem with FIT is the need to set the tariff at
an appropriate level, risking that it may be too high, creating excessive rents for
some generators, or too low, restricting investment (Green and Vasilakos 2011). In
fact, as has been seen, regulatory uncertainty is one of the main problems of the FIT
system.

Although a TGC system provides less market certainty than price-based
mechanisms, price fluctuations and market dynamics can be partly influenced by
the design of the regime (Gan et al. 2005). Another source of evidence in favor of
TGC is effectiveness in the achievement of the goal to secure a certain share of
renewables in electricity consumption (Bye 2003). It is expected that competition
between producers and increasing supply of green certificates will lead to a decline
in the price of electricity from renewable sources, so in this respect, the green
certificate system is considered as a cost effective way to meet the renewable energy
target (Schaeffer et al. 1999). One more argument in favor of a TGC market is the
issue of equity, i.e. the fairness of the distribution of costs and benefit between
different actor groups (Bergek and Jacobsson 2010). The market decides the level of
support given to renewable electricity production, so apart from guaranteeing the
production of a certain quantity of RES-E, green certificates are added to the
revenue that the producer can get for the electricity itself. Additionally, the intro-
duction of market forces on the ‘non-electricity’ attributes of energy is supposed to
bring about greater efficiency. The transition to market based solutions leads to
effective competition between different forms of power from renewable energy
sources, since producers must try to benefit from technical progress due to the
pressures of bidding processes in the certificates market (Menanteau et al. 2003).

At present there is no general agreement on the appropriateness of the different
schemes. Existing literature supports that the type of allowance given to each
renewable technology must be adapted according to their stages of maturity
(Christiansen 2001; Meyer 2003; Jacobsson and Lauber 2006). Technological
maturity is closely related to the cost per MWh of each technology. In this sense,
three main categories may be distinguished according to their merit order (Jensen
2003):

• Cost-competitive technologies. These technologies are not eligible for policy
support, since their production cost is similar to (or even lower than) conven-
tional sources. This category includes large hydro.

• Moderately non-competitive technologies. These technologies are to be com-
plemented with a relatively modest support system. The production cost of RES-
E included in this category is higher than the cost of electricity generated by
some conventional sources. Such technologies may include small hydropower,
some biomass-based technologies and onshore wind power.
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• Non-competitive technologies. Those technologies that are still far from being
market-ready, but have the potential to join the first category in the longer term,
should be supported by incentive schemes. These technologies would not sur-
vive without incentives, since the investment in R&D needed to make them
competitive would never take place. Expensive technologies and technologies in
the technical development phase, such as solar-photovoltaic or offshore wind
power technologies, are included in this category.

When designing appropriate renewable energy support frameworks, one of the
main criticisms of TGC markets concerns the competition between renewable
technologies at different stages of development. On the one hand, if the certificate
price corresponds to the most expensive renewable technology included in the
system, all technologies with lower costs would receive an extra profit (Verbruggen
2004) and the promotion of the total renewable portfolio would be more expensive
than necessary. On the other hand, if the certificate price corresponds to the
moderately non-competitive technologies, one possible solution is to reserve the
green market for the most mature renewable technologies (Meyer 2003); and so,
photovoltaics being at an early stage could benefit from a FIT approach, while wind
or biomass would be ready for competition in a TGC market (Midttun and Gautesen
2007). Moreover, instead of FIT, additional investment subsidies for solar power
could be available, improving the economic incentives for investments in solar
electricity.

In this chapter, we therefore suggest that, since many renewable technologies are
nowadays at a quite mature stage (moderately non-competitive technologies, e.g.
wind, biomass or small hydro), green certificates could work properly as a promotion
instrument in a country such as Spain. Additionally, the European Commission
considers the model of green certificates as the preferable candidate for a European
common support scheme for renewable energy (Ringel 2006). The Commission also
claims that the existing promotion framework should be improved in order to reach
the target of a 20 % share of renewables in the EU’s total energy consumption by
2020 at the lowest possible cost (European Commission 2011). Moreover, some
authors claim that allowing for EU-wide trade in green certificates can ensure a cost-
effective distribution of renewable energy production (it cuts the overall cost of
achieving the EU’s renewable target by almost 70 %), but differentiated renewable
targets across countries reduce the cost-effectiveness of the TGC system as national
targets prevent a cost-effective distribution of energy (Aune et al. 2012). We
therefore examine, both theoretically and empirically, using actual data of the
Spanish electricity market, the feasibility of a TGC market in Spain and conclude
that it may help to reduce the financial burden derived from the FIT-FIP system.

Regarding the instruments for the promotion of RES-E, price-driven instruments
(i.e. FIT) are designed to support the costs of electricity production, whereas
quantity-driven instruments (i.e. TGC) fix a capacity target to be met. Generally,
those instruments are implemented separately, but there are three cases in which the
combination of them could be relevant for the promotion of RES-E (Schaeffer et al.
1999):
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• During the transition phase from one instrument to another.
• When a country with a certain promotion scheme decides to allow producers to

take part in a trading system with other countries, where another promotion
scheme is implemented.

• In order to compensate for the disadvantages of one instrument, a permanent
combination of instruments could be useful.

In the first case, a gradual introduction of the TGC market should be applied and
transition schemes for existing plants should be established to ensure that the new
investors have stable economic conditions until the market is fully functional.
Regarding the second case, international trade with certificates can exploit com-
parative resource advantages and lower costs, as long as common rules for the trade
of certificates and the period of validity are implemented. In the latter case, com-
bining two different instruments may help to offset some of the disadvantages of
each instrument. For instance, the market-based nature of TGC helps to reduce the
regulatory uncertainties of the FIT scheme, but at the same time, non-competitive
technologies might not be ready for a TGC system, so they would need a FIT to
survive.

The chapter is structured as follows. Section 2 develops a theoretical model to
analyze the interaction between the electricity pool and the TGC market. Simula-
tions and results for the Spanish electricity market are presented in Sect. 3. Finally,
Sect. 4 summarizes the main conclusions of this work.

2 The Model

In this section, we set up a model for the certificates market, the electricity market
and the interaction between them. Electricity considered as a commodity is a
homogenous good, independently of the energy source, and it is sold as such in a
liberalized physical electricity market. The eco-services provided by some sources
of energy are sold separately on the green certificates market. The ecological impact
of different renewable energy sources may be different, along with the cost asso-
ciated to the electricity system management. However, we assume here for sim-
plicity that the ecological services of the renewable sources of energy are also a
homogeneous good, ignoring for example differences between hydro and wind
sources of energy.

We present a two-stage model under autarky (we consider a one country closed-
economy without international trading) and we assume that both markets work
under perfect competition. The game takes place in two stages:

• Stage 1: Electricity generators take supply decisions at the pool, retailers take
demand decisions and the wholesale market clears. Generators are awarded
certificates depending on their green production.

• Stage 2: Generators decide how many green certificates to sell. Retailers buy
certificates to fulfill their obligations. The market for certificates clears.
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Here it is assumed that the TGC are issued at the end of stage 1 to be sold at
stage 2. We solve the game using backwards induction, i.e. we solve first the market
for certificates (stage 2). We assume that each generator produces both renewable
and non-renewable electricity and that each producer is endowed a certain amount
of TGC depending on the clean electricity delivered to the network. We assume a
one-to-one link between the number of green certificates endowed and the number
of MWh produced by renewable technologies (i.e. 1 MWh = 1 TGC). Those TGC
are assumed to have a regulator’s defined life of one period2 so banking is not
allowed in our model and unused certificates are withdrawn from the market when
the period expires.

With regard to the technology mix of RES-E, some authors are in favor of a
technology neutral design in order to promote competition between the certificate-
eligible technologies, so that the market decides which technologies are preferable
to achieve the target, which encourages a cost-efficient deployment of renewable
energy sources (Nilsson and Sundqvist 2007). On the contrary, other authors
(Schmalensee 2011) suggest that technology-specific multipliers could be used to
penalize some intermittent technologies, such as wind, for the costs they impose on
the electric power system or even to reward some technologies because of the
perceived external effect of induced learning-by-doing if their production is
increased, such as biomass. For the sake of simplicity, we consider the technology
neutral design and we treat all renewables as a whole in our analysis.

All things considered, there are three main actors in our model: the regulator,
retailers (demand side), and generators (supply side); and two interacting markets.
We do not consider any uncertainty for the sake of simplicity. Since retailers and
generators behave competitively in both markets, they are unable to affect the price
of electricity.

The notation used in the model is compiled in Table 1.

2.1 The Tradable Green Certificates Market

2.1.1 Regulation in the TGC Market

The market for TGC should be regulated due to information asymmetries: the
energy attribute being sold in this market is not observable for the end-use con-
sumer. The regulator therefore needs to certify the resources used in the energy
production process and to assign the property rights of a TGC for each MWh
produced by a generator (for example, issuing a certificate with a serial number).
These certificates can then be marketed and their sale and use should be closely
monitored.

2 Certificates may have a longer life, and there may be certificates in the market with different
lifespans and different trading prices. We ignore this issue for the moment.
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Certificates are generally issued by government decision. This obligation could
be transferred to the supply side (e.g. Italy) or to the demand side (e.g. retailers in
the UK or end-users in Sweden). Our model considers that the obligation to buy
TGC is set on retailers (calculated on the basis of the desired share of renewable
consumption), in order to avoid the free-riding problem due to the public-good
nature of the ecological benefit of green electricity (Menanteau et al. 2003). Relying
renewable electricity demand on consumer choice has also been proposed as an
alternative to obligatory schemes, but this option seems to have little impact on the
deployment of renewable energy technologies (EWEA 2004), since most

Table 1 Notation of the model

Generating sector

cb Intercept of the marginal cost function of black electricity

cg Intercept of the marginal cost function of green electricity

h Parameter of the cost function of each generator ðh[ 0Þ
H Parameter of the aggregate cost function

qb Quantity of black electricity (non-renewable) sold by one generator

qg Quantity of green electricity (renewable) sold by one generator

qG Total quantity of electricity (non-renewable + renewable) sold by one generator
ðqG ¼ qb þ qgÞ

Qb Aggregate supply of black electricity

Qg Aggregate supply of green electricity

QG Aggregate supply of electricity ðQG ¼ Qb þ QgÞ
xG Amount of TGC sold by one generator

XG Aggregate supply of TGC

Retailing sector

a Parameter of the demand function for electricity ða[ 0Þ
b Parameter of the demand function for electricity ðb� 0Þ
qR Total quantity of electricity bought by one retailer

QR Aggregate demand for electricity

xR Amount of TGC bought by one retailer

XR Aggregate demand for certificates

Market prices

pc Price of the certificates at the TGC market

pe Price of electricity at the pool

Policy variables (regulated)

a Quota of green electricity imposed by the policy maker ð0� a� 1Þ
d Parameter of the penalty function of one retailer � 1

2\d� 0
� �

D Parameter of the aggregate penalty function

f Parameter of the penalty function of one retailer ðf [ 0Þ
F Parameter of the aggregate penalty function

s Price to the end-users of electricity

x Retailers’ obligation to purchase TGC ðx ¼ aqRÞ
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consumers prefer renewable energy but are not willing to purchase it at higher
prices (Rader and Norgaard 1996). Moreover, we would expect the demand coming
from end-use consumers to be so low that the equilibrium price would not reflect
the social value of the ecological benefit of green energy. Thus, a mandatory quota
of TGC for retailers may solve this market failure.

Clear consistent government policy is thus needed to set a stable green certificate
system (Schaeffer et al. 1999). In order to protect both TGC producers and con-
sumers, minimum and maximum prices could be established. Minimum values are
secured when the government itself also acts as a buyer of green certificates (e.g.
the Walloon region in Belgium), whereas maximum values are set through a
penalty system for non-compliance. The role of policy makers in our TGC model
lies in the establishing of (i) the amount of certificates that each green producer
receives in relation to the proportion of green electricity produced (here one-to-one
relationship), (ii) the retailers’ obligation to purchase a minimum number of TGC
(quota α) and (iii) the payment penalty if retailers do not meet their obligation.

2.1.2 The Role of Retailers in the TGC Market

Two parties are involved on the demand side: the end-users of electricity and the
retailers. Retailers get their margins from buying wholesale and selling to end-users.
We model demand for TGC as reflecting the retailer’s obligation to pay for the
environmental attributes of energy, which are related to the way it has been pro-
duced. Regulation may establish the obligation for retailers to meet some renewable
energy requirements, and these obligations determine the demand on the TGC
market. Each retailer must buy a fraction of total consumption.

In our analysis, electricity retailers have an incentive to buy certificates from the
producers, because penalties are set if they are not able to meet their obligation.
Retailers must pay a non-compliance fine depending on the number of certificates
not bought. Our analysis models the penalty as a linear-quadratic loss function that
leads to a decreasing demand for TGC. Therefore, the demand function has a price-
cap, since no retailer would demand green certificates at a higher price than the
penalty incurred for non compliance. Retailers not complying with the target would
pay depending on the number of certificates not acquired. Retailers buying more
than the target would neither pay for it nor receive any reward for the extra cer-
tificates acquired. The penalty function for a retailer is then given by:

PðxRÞ ¼ f 1
2 ðx� xRÞ2 þ dðx� xRÞ
h i

if xR\x

0 if xR � x;

(

where f [ 0 and � 1
2\d� 0 are the parameters of the penalty function, x is the

retailers’ obligation to purchase TGC and xR is the amount of TGC bought by the
retailer.
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By allowing retailers to choose the amount of TGC they want to buy in the
market, we give an active role to demand. The elasticity of the demand for cer-
tificates will depend on the obligation x and the parameters of the penalty function,
f and d. If we set f ¼ 0, there would be no penalty in case the obligation to purchase
certificates is not met. Retailers decide xR in the second stage and the number of
TGC traded is determined endogenously. Thus, the optimization problem for
retailers is defined as follows:

max
xR

pR ¼ qR s� peð Þ � xRpc � f
1
2
ðx� xRÞ2 þ dðx� xRÞ

� �
;

where qR is the total amount of electricity bought by one retailer, s is the price to the
end-users of electricity, pe is the price of electricity at the pool and pc is the
certificate price at the TGC market.

Since the retailer’s obligation to acquire TGC depends on the demand for
electricity in the previous period and the government target, the relation x ¼ aqR
holds, where α is the quota of renewable electricity imposed by policy makers and
0� a� 1. Hence, the optimization problem is equivalent to the following one:

max
xR

pR ¼ qR s� peð Þ � xRpc � f
1
2
ðaqR � xRÞ2 þ dðaqR � xRÞ

� �

Notice that the price s that end-consumers pay is perceived by the retailer as
given. Likewise, the demand for electricity qR and the selling price pe are given at
this stage, since when the TGC market opens, the energy production decisions have
already been made and the energy market has cleared.

The first order condition reads:

opR
oxR

¼ �pc � f ðaqR � xRÞð�1Þ � d½ � ¼ 0

It follows that a retailer’s demand for certificates is:

xR ¼ aqR þ d � pc
f
;

where 0� a� 1 and f [ 0.
The certificate system therefore is steered by the two parameters of the penalty

function f and d, but also influenced by the regulated obligation α.
Aggregate demand for TGC is the total demand for certificates in the retailing

sector:

XR ¼ aQR þ D� pc
F if pc\FðaQR þ DÞ

0 if pc �FðaQR þ DÞ;
�

ð1Þ
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where XR ¼ P
xR is the aggregate demand for certificates, QR ¼ P

qR is the
aggregate electricity consumption by end-users, D ¼ P

d and 1
F ¼ P 1

f .
We therefore may conclude that retailers’ demand for TGC depends on the total

amount of energy sold to the final consumer, the price of the certificates, the TGC
percentage requirement α and the parameters of the penalty function D and F. The
number of TGC that a retailer is willing to buy depends negatively on the certificate
price. Zero demand occurs when pc �FðaQR þ DÞ, while there is a positive
demand for certificates as long as pc\FðaQR þ DÞ holds. Since the price of the
certificates cannot be negative, the condition FðaQR þ DÞ[ 0 must always hold.

2.1.3 The Role of Generators in the TGC Market

Since generators hold the property rights on the energy they produce and the
renewable attribute of energy, TGC supply is determined by the optimal generators’
decisions concerning the selling of green certificates. Each generator can produce
both renewable and non-renewable electricity and it is endowed a certain amount of
TGC depending on the clean electricity delivered to the network. Hence, total
supply of certificates is constrained to the production of green electricity. We
assume a one-to-one link between the number of green certificates endowed and the
number of MWh produced by renewable technologies.

Regarding costs, we assume additively separable cost functions with respect to
the quantities of conventional and renewable energy sources. We also assume
linearly increasing marginal costs. Total costs for black and green generation are
respectively:

Cb qbð Þ ¼ cbqb þ 1
2
hq2b;

Cg qg
� � ¼ cgqg þ 1

2
hq2g;

with cg [ cb, since the technologies subject to green certificates are classified as
moderately non-competitive (see Sect. 1). By assuming the same parameter
h ðh[ 0Þ for both cost functions, we ensure that the marginal cost function of
renewable electricity is always higher than the marginal cost function of fossil
electricity (the marginal cost curves do not cross).3

We assume that there is perfect competition in the certificates market, so firms
are not able to modify the market price by means of changing its own certificates
production or demand.

3 Other authors have modelled these cost functions with two different parameters to allow for
differences in the level of marginal costs of black and green electricity (Ciarreta et al. 2011).
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The maximization problem that each generator solves reads as follows:

max
xG

pG ¼ peðqb þ qgÞ þ xGpc � ðcbqb þ 1
2
hq2bÞ � ðcgqg þ 1

2
hq2gÞ

subject to:

xG � qg;

where qg and qb are the quantity of green and black electricity sold by one gen-
erator, xG is the amount of TGC sold by the generator and h, cg and cb are
parameters of the cost function.

Perfect competition in the certificates market ensures that xG ¼ qg and XG ¼ Qg,
so the aggregate supply of certificates under perfect competition is the electricity
produced by green sources.

2.1.4 Market Balance for Green Certificates

In order to determine the equilibrium certificate price we use the condition of
market balance for tradable green certificates. The total number of certificates has to
be equal to the demand for certificates: XG ¼ XR. From (1), the market balance
equation for the TGC market is therefore given by:

Qg ¼ aQR þ D� pc
F

Hence, the price of certificates may be written as:

p�c ¼ F½Dþ aQR � Qg�

The higher the deviation aQR � Qg, the higher the price. With no deviation,
aQR � Qg ¼ 0, the certificate price is pc ¼ FD. The price increases with the
deviation from the objective and therefore provides the incentives for investment in
green energy sources.

Finally, since QR ¼ Qg þ Qb, the TGC price and quantity in equilibrium can be
expressed as:

p�c ¼ F½aQb þ Dþ ða� 1ÞQg� ð2Þ

X�ðp�cÞ ¼ Qg ð3Þ

This means that the certificate price would be zero if the quantity of green
electricity ðQgÞ were higher than the target ðaðQb þ QgÞÞ. Remember that by the
time the certificate market meets, the electricity market has already cleared, so the
volume of green energy produced will be known.
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2.2 The Electricity Market

2.2.1 The Generators’ Behavior in the Electricity Market

We assume that each generator has renewable (green) and non-renewable (black)
energy production (qg and qb, respectively) and that both types of production plants
are necessary to satisfy the demand for energy. We also consider that there are no
capacity constraints and that production costs are higher for renewable energy
production. The generator decides about its level of electricity supply in stage 1.
Hence, the optimization problem to be solved by each generator is:

max
qb;qg

pGðqb; qgÞ ¼ peðqb þ qgÞ þ pcqg � ðcbqb þ 1
2
hq2bÞ � ðcgqg þ 1

2
hq2gÞ

The first order conditions are:

opG
oqb

¼ pe � cb � hqb ¼ 0

opG
oqg

¼ pe þ pc � cg � hqg ¼ 0

Generators are assumed perfectly competitive4 in both markets and they produce
green electricity so that marginal revenue ðpe þ pcÞ equals marginal cost ðcg þ hqgÞ.

The supply functions of black and green energy are respectively:

qb ¼ pe � cb
h

qg ¼ pe þ pc � cg
h

Under a TGC system the payment received by green producers for each cer-
tificate should cover the extra costs involved in producing green electricity in
comparison with fossil fuel-based electricity. Thus, the certificate price corresponds
to the difference between the marginal cost of renewables ðcg þ hqgÞ and the market
price for electricity ðpeÞ. As long as firms are able to cover their costs they will be
willing to stay in operation.

The aggregate supply is:

Qb ¼ pe � cb
H

Qg ¼ pe þ pc � cg
H

QG ¼ Qb þ Qg ¼ 2pe þ pc �ðcbþ cgÞ
H ;

where 1
H ¼ P 1

h.

4 For an analysis of market power in electricity markets see Ciarreta and Espinosa (2010a, b).
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2.2.2 The Retailers’ Behavior in the Electricity Market

We assume a linear demand function for electricity with parameters a ða[ 0Þ and
b ðb� 0Þ:

QR ¼ a� bpe

We assume that b is not large and that the condition bðH � aFÞ þ 2[ 0 holds.

2.2.3 Market Balance for Electricity

In equilibrium, total supply of electricity ðQG ¼ Qb þ QgÞ has to be equal to the net
demand for electricity ðQRÞ:

QG ¼ Qb þ Qg ¼ QR

And, thus, we get the following electricity price in terms of the expected cer-
tificate price:

p�eðpcÞ ¼
aH þ cb þ cg � pc

2þ bH
ð4Þ

This result shows that there is a negative relationship between the electricity
price and the certificate price: the higher the expected certificate price, the lower the
electricity price.

Similarly, the quantity of electricity in equilibrium is as follows:

Q�
bðp�eÞ ¼

p�e � cb
H

Q�
gðp�eÞ ¼

p�e þ pc � cg
H

Q�ðp�eÞ ¼ Q�
bðpcÞ þ Q�

gðpcÞ ¼
2p�e þ pc � ðcb þ cgÞ

H

Inserting the price (4) in the quantity functions yield:

Q�
bðpcÞ ¼

aH � pc þ cg � cbð1þ bHÞ
Hð2þ bHÞ ð5Þ

Q�
gðpcÞ ¼

aH þ pcð1þ bHÞ þ cb � cgð1þ bHÞ
Hð2þ bHÞ ð6Þ
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Q�ðpcÞ ¼ Q�
bðpcÞ þ Q�

gðpcÞ ¼
2aþ pcb� bðcb þ cgÞ

2þ bH
ð7Þ

Equations (5)–(7) show that the price of certificates increases the production of
green electricity and decreases the production of black electricity. But this effect
seems to be stronger in the green production and, hence, the total production of
electricity is positively affected by the price of certificates, showing a greater
influence as parameter b of the demand function rises. Regarding costs, the supply
of non-renewable electricity is positively affected by the cost parameter of
renewable energy, whereas the supply of green electricity is increased by the cost
parameter of black production. Both supplies are negatively affected by their own
generation costs.

2.3 Equilibrium in the Electricity Market and the Green
Certificates Market

As stated before, the game is played sequentially (electricity market clears first and
TGCmarket second), sowe proceed using backward induction.We thus start from the
demand for certificates Eq. (1), determined in stage 2, andwe substitute the expression
for the equilibrium quantity of electricity (7). Since QR ¼ QG ¼ Qb þ Qg, the
demand for certificates can be expressed in terms of the certificate price as:

XRðpcÞ ¼ Fa½2a� bðcb þ cgÞ� þ DFð2þ bHÞ þ ðbFa� 2� bHÞpc
Fð2þ bHÞ ð8Þ

In order to have a negative relationship between the number of TGC and the
certificate price, we need bðH � aFÞ þ 2[ 0, which holds by assumption. Note
that for values of b close to zero, this inequality always holds.

Additionally, from the equilibrium of the TGC market (3) we get that
X�
Rðp�cÞ ¼ Q�

gðpc�Þ, so using (8) and (6) we get the final expression for the certificate
price in equilibrium.

p�c ¼
aFHð2a� 1Þ � cbFð1þ bHaÞ þ cgF½1þ bHð1� aÞ� þ DFHð2þ bHÞ

bFHð1� aÞ þ Hð2þ bHÞ þ F
ð9Þ

Equation (9) shows that a decrease in the costs of renewable electricity decreases
the certificate price. Therefore, any efficiency improvement in the production of
green electricity would have the effect of decreasing the price of the certificates,
even if the regulator were not aware of the efficiency gain. This is an advantage of
TGC versus FIT.

274 A. Ciarreta et al.



3 Quantitative Analysis of the Effect of TGC in Spain

We simulate the implementation of a TGC incentive scheme in this section. In
Spain, renewable producers are under a pure FIT or a FIP scheme, which is a fixed
premium on top of the market price (RD 661/2007 2007). Under the FIT system,
renewable generators sell their electricity under a guaranteed fixed tariff, whereas
under the FIP option they take part in the daily market and get the price of the pool
plus a guaranteed premium. In case of FIP, a cap and floor system has been
introduced in order to protect renewable generators when the market price is too
low and prevent excessive gains when the price is high enough. The floor is the
lowest level of premium plus the electricity price, whereas the cap is the maximum
electricity price to where a premium is still paid (Interactive EurObserv’ER Data-
base 2012). The FIT approach isolates renewable generators from market prices and
risks and consumers carry the price risk. In contrast, the FIP option let RES-E
producers face some market risk. Generators are then exposed to market price
signals and the premium is adjusted to keep both generators’ risks and revenues
within a particular range (Klessmann et al. 2008).

As Table 2 shows, only a minor part of the solar electricity is sold under the FIP
scheme in Spain, whereas the majority of wind uses this promotion option rather
than FIT. The high financial support level given to solar generators under the FIT
scheme induced solar producers to choose the FIT system rather than FIP. How-
ever, due to the great burden of the current tariffs in the deficit of regulated
activities,5 FIT-FIP to new capacity have been removed, affecting all technologies.
It is commonly argued that solar energy may not be competitive enough to take part
successfully in a TGC system, but the market participation shares also show that
there are other technologies that may be able to compete in a TGC market, such as
wind power.

We simulate a switch to a TGC system in this section. The correct definition of
the regulation parameters could lead to an efficient TGC system, achieving a cer-
tificate price that could send the correct signals for investment in renewable energy
sources.

We calibrate our model according to the data of the year 2010 (see Table 3). For
the sake of simplicity, as final price we take the sum of the price of the pool ðpeÞ
and the premium ðpFIPÞ, even though there are other components in the final price
of the Spanish electricity system.6 The price pFIP is computed as the equivalent
premium divided by the total renewable electricity sold in the pool and under tariff
(provided by the CNE).

We compute the costs of renewable and non-renewable electricity by applying
the equilibrium condition marginal revenue equals marginal cost. The relationship

5 See Espinosa (2013a, b) and (Espinosa and Pizarro-Irizar 2012).
6 Electricity costs include the daily market (pool, bilateral contracts and intraday market) (OMIE
2007) and other costs such as restrictions, capacity payments, transport and distribution costs,
diversification and security of supply and other access costs (Mejía 2010).
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pe ¼ cb þ HQb provides the intercept of the marginal cost function of black elec-
tricity is cb ¼ 28:09. From the expression pe þ pFIP ¼ cg þ HQg we get the
parameter for green electricity cg ¼ 106:73. The value for the parameter H ¼ 10�7

is chosen in order to scale the cost functions for green and black electricity.
We assume an inelastic demand for electricity for the year 2010, taking a ¼

193; 345 and b ¼ 0. We fix D ¼ �0:01 and F ¼ 50 and see how the certificate
price would have been for different values of the obligation and cost of green
electricity. The values for the parameters have been selected so that the certificate
price is high enough to promote investment.7

If the regulator knows the cost function for each generator, the TGC system is
equivalent to the FIT-FIP in the sense that F can be set at a value that replicates the
outcome of the FIT-FIP system (see columns (1) and (2) in Table 4). The advantage
is that the TGC market reacts to efficiency gains in the production of green energy
even if the regulator does not observe these gains or react to them (see column (3)
in Table 4). If the decrease in cg, from 106.73 to 82,8 is unobserved to the regulator,

Table 2 Share of the energy sold under FIP in the pool over the total energy sold (FIT + FIP) by
the Special Regime (%)

2002 2003 2004 2005 2006 2007 2008 2009 2010 2011

Cogeneration 4.90 37.56 42.02 54.06 77.44 60.58 62.52 66.82 15.23 17.55

Solar 0.00 0.00 0.00 0.00 93.46 0.48 0.59 1.03 9.72 0.00

Wind 0.00 0.00 2.51 63.80 37.98 93.77 92.66 92.99 90.52 77.37

Small hydraulic 0.00 0.00 4.36 24.46 55.62 53.52 67.10 65.74 50.74 49.51

Biomass 0.00 0.00 2.05 44.82 47.57 68.21 68.59 62.83 31.74 28.67

Waste 0.00 0.00 11.10 34.75 24.42 60.11 87.20 95.42 80.31 82.21

Waste treatment 0.00 0.00 0.00 15.38 24.42 14.75 0.00 0.00 0.00 0.00

Source Own elaboration using data from the National Energy Commission (CNE)

Table 3 Electricity market in
Spain

Q ¼ Qb þ Qg 193,345

Qb 99,243

Qg 94,101

Qg=Q 0.49

pe 38.01

pFIP 78.13

pe þ pFIP 116.14

Actual data 2010. Energy in GWh and prices in €/MWh
Source Ciarreta and Espinosa (2012), premium computed from
CNE (2011)

7 However, changes in the value of the parameter D do not affect the price substantially.
8 According to Sallé et al. (2012), average costs of wind power are 82 €/MWh.
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the FIT-FIP would not reflect this efficiency gain in the cost of promoting renew-
able energy. The TGC market however would translate the lower cost into a lower
price of the certificate and the cost to the system of producing a green MWh (from
116.14 to 91.41 €/MWh).

Additionally, if the regulator increases the obligation for renewable electricity,
say from 0.49 to 0.60, the TGC market would determine the price of certificates
necessary to implement the new share of renewables (see column (4) in Table 4).
With such an ambitious renewable target, considering actual costs for green pro-
duction and the values chosen for the penalty function, the FIT-FIP system would
be more cost-effective (the certificate price would be 82.51 €/MWh, higher than the
price for the FIT-FIP system). This proves the importance of the correct setting of
the regulation parameters and the renewable target. However, as the renewable cost
falls, the TGC system once again shows this efficiency gain and the certifcate price
drops without changing the penalty function (see column (5) in Table 4).

Finally, our analysis assumes that agents are price takers and behave competi-
tively. In particular, the supply of certificates must be competitive. For this reason,

Table 4 Simulations of the TGC market in Spain

a ¼ 0:49 a ¼ 0:60

FIP TGC TGC efficiency
gain

TGC TGC efficiency
gain

Parameters

a – 0.49 0.49 0.60 0.60

cb 28.09 28.09 28.09 28.09 28.09

cg 106.73 106.73 82 106.73 82

H – 10�7 10�7 10�7 10�7

F – 50 50 50 50

D – –0.01 −0.01 −0.01 −0.01

a – 193,345 193,345 193,345 193,345

b – 0 0 0 0

Energy traded (GWh)

Qb 99,243 99,243 99,243 77,338 77,338

Qg 94,101 94,101 94,101 116,007 116,007

Prices (€/(MWh)

pe 38.01 38.01 38.01 35.82 35.82

pFIP 78.13 – – – –

pc – 78.13 53.40 82.51 57.78

pe þ pFIP 116.14 – – – –

pe þ pc 116.14 91.41 118.33 93.60

pe þ pc � pFIP – 0 −24.73 2.19 −22.54

Preferred
technology

– – TGC FIP TGC

Source Own elaboration with market data for 2010
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the proposal of a TGC market would not be appropriate if the number of producers
of a given technology is not large enough. Thus, a FIT-FIP could be more adequate
for the initial stages.

4 Conclusions

We have analyzed the interaction between the TGC market and the electricity
market when both markets work under perfect competition, even though a high
concentration in generation and a low demand elasticity may indicate the presence
of market power (Green and Newbery 1992; Cardell et al. 1997; Fabra and Toro
2005). The analysis of these markets with price-maker agents is left for future
research.

We have modelled a decreasing demand for TGC and we have shown, both
theoretically and empirically, that a decrease in the costs of renewable electricity
may decrease the certificate price. Therefore, any efficiency improvement in the
production of green electricity would have the immediate effect of decreasing the
price of the certificates, even if the regulator were not aware of the efficiency gain.
This transmission of market signals makes the TGC more efficient when compared
to the FIT system.

However, the certificate price may be too low for the non-competitive tech-
nologies. In order to avoid this problem, we propose the combination of TGC and
FIT, even if there is a wide variety of promotion schemes. The combination of a
certificate system and a feed-in scheme could be used for a more efficient promotion
of RES-E. It is known that the FIT scheme helps to maintain investor confidence, so
technologies not being competitive under a TGC system (e.g. solar energy),
because of their high cost and their need of R&D investments, could adopt a FIT
regulation; whereas competitive renewable technologies (e.g. wind power) would
work under a purely TGC setup. With this approach, the less mature technologies
will be protected and gradually integrated into the certificate market. Moreover, the
TGC scheme is more cost-effective, because the certificate price would be set by a
low-cost technology rather than a high-cost one, avoiding the windfall profits for
low-cost technologies that could offset the potential efficiency gains of a TGC
system when the price is set by a high-cost technology. Thus, instead of separating
FIT and TGC, an interesting possibility for solar energy could be the implemen-
tation of a complementary FIT added to the TGC price. This regulation could help
to finance solar technologies, since they would receive a higher price than the
certificate (FIT + TGC), and at the same time it would help to reduce the actual
burden, because one component of the incentive would be market-based (TGC) and
would adjust easily to the efficiency gains of the technologies. This system that
combines both renewable promotion schemes tries to take advantage of both TGC
and FIT.

278 A. Ciarreta et al.



References

Aune FR, Dalen HM, Hagem C (2012) Implementing the EU renewable target through green
certificate markets. Energy Econ 34:992–1000

Bergek A, Jacobsson S (2010) Are tradable green certificates a cost-efficient policy driving
technical change or a rent-generating machine? Lessons from Sweden 2003–2008. Energy
Policy 38(3):1255–1271

Buttler L, Neuhoff K (2008) Comparison of feed-in tariff, quota and auction mechanisms to
support wind power development. Renew Energy 33:1854–1867

Bye T (2003) On the price and volume effects from green certificates in the energy market.
Discussion papers 351. Statistics Norway, Oslo

Cardell JB, Hitt CC, Hogan WW (1997) Market power and strategic interaction in electricity
networks. Resour Energy Econ 19:109–137

Christiansen AC (2001) Technological change and the role of public policy: an analytical
framework for dynamic efficiency assessments. Report of the Fridtjof Nansen Institute 74 pp

Ciarreta A, Espinosa MP (2010a) Market power in the Spanish electricity auction. J Regul Econ 37
(1):42–69

Ciarreta A, Espinosa MP (2010b) Supply function competition in the Spanish wholesale electricity
market. Energy J 31(4):137–157

Ciarreta A, Georgantzis N, Gutiérrez-Hita C (2011) On the promotion of renewable sources in spot
electricity markets. The role of feed-in-tariff systems. In: 4th annual conference on competition
and regulation in network industries, Brussels

Ciarreta A, Espinosa MP, Pizarro-Irizar C (2012a) The effect of renewable energy in the Spanish
electricity market. Lect Notes Inform Technol 9:431–436

Ciarreta A, Espinosa MP, Pizarro-Irizar C (2012b) Efecto de la energía renovable en el mercado
diario de electricidad. Escenario 2020. Cuadernos Económicos de ICE 83:101–116

Ciarreta A, Espinosa MP (2012) The impact of regulation on pricing behavior in the Spanish
electricity market (2002–2005). Energy Econ 34(6):2039–2045

CNE (2011) Información Estadística sobre las Ventas de Energía del Régimen Especial
European Wind Energy Association. Wind Energy (2004) The Facts, an analysis of wind energy in

the EU-25, funded by EU Commission
Espinosa MP, Pizarro-Irizar C (2012) Políticas para la reducción del déficit tarifario. Papeles de

Economía Espaola 134:117–126
Espinosa MP (2013a) Understanding the electricity tariff deficit and its challenges. Span Econ Fin

Outlook 2(2):47–55
Espinosa MP (2013b) An austerity-driven energy reform. Span Econ Fin Outlook 2(5):51–61
European Commission (2011) Communication from the commission to the European parliament

and the council. Renewable energy: progressing towards the 2020 target. COM(2011) 31 final
Fabra N, Toro J (2005) Price wars and collusion in the Spanish electricity market. Int J Ind Organ

23:155–181
Gan L, Eskeland GS, Kolshus HH (2005) Green electricity market development: lessons from

Europe and the US. Energy Policy 35:144–155
Green RJ, Newbery DM (1992) Competition in the British electricity spot market. J Polit Econ 100

(5):929–953
Green R, Vasilakos N (2011) The economics of offshore wind. Energy Policy 39(2):496–502
Haas R, Panzer C, Resch G, Ragwitz M, Reece G, Held A (2011) A historical review of promotion

strategies for electricity from renewable energy sources in EU countries. Renew Sustain Energy
Rev 15(2):1003–1034

Interactive EurObserv’ER Database (2012) http://www.eurobserv-er.org
Jacobsson S, Lauber V (2006) The politics and policy of energy system transformation-explaining

the German diffusion of renewable energy technology. Energy Policy 34(3):256–276
Jensen JC (2003) Policy support for renewable energy in the European Union. Energy Research

Centre of the Netherlands, ECN Publication, ECN-C-03-113

Switching from Feed-in Tariffs to a Tradable Green Certificate Market 279

http://www.eurobserv-er.org


Jensen S, Skytte K (2002) Interaction between the power and green certificate markets. Energy
Policy 30:425–435

Klessmann C, Nabe C, Burges K (2008) Pros and cons of exposing renewables to electricity
market risks—a comparison of the market integration approaches in Germany, Spain, and the
UK. Energy Policy 36:3646–3661

Mejía P (2010) Los retos del mercado. I Foro permanente de la energía. Desafíos energéticos del
futuro

Menanteau P, Finon D, Lamy M-L (2003) Prices versus quantities: choosing policies for
promoting the development of renewable energy. Energy Policy 31(8):799–812

Meyer NI (2003) European schemes for promoting renewables in liberalised markets. Energy
Policy 31(7):665–676

Midttun A, Gautesen K (2007) Feed in or certificates, competition or complementarity?
Combining a static efficiency and a dynamic innovation perspective on the greening of the
energy industry. Energy Policy 35:1419–1422

Nilsson M, Sundqvist T (2007) Using the market at a cost: How the introduction of green
certificates in Sweden led to market inefficiencies. Util Policy 15:49–59

Neuhoff K (2005) Large-scale deployment of renewables for electricity generation. Oxf Rev Econ
Policy 21(1):88–110

OMIE (2007) Daily and intraday electricity market activity rules, version 01/07/2007
Rader N, Norgaard R (1996) Efficiency and sustainability in restructured electricity markets: the

renewables portfolio standard. Electr J 9(6):37–49
Rathman M (2007) Do support systems for RES-E reduce EU-ETS-driven electricity prices?

Energy Policy 35(1):342–349
Real Decreto 661/2007, May 25 de mayo. Regulation of renewables. Boletín Oficial del Estado

126, 22846-22886
Real Decreto-ley (2012). Elimination of incentives to new renewable capacity. Boletín Oficial del

Estado 24:8068–8072
Ringel M (2006) Fostering the use of renewable energies in the European Union: the race between

feed-in tariffs and green certificates. Renew Energy 31:1–17
Sallé C, López JM, Muñoz M, Martín I, Sáez de Miera G, Laverón F (2012) El déficit de tarifa y la

importancia de la ortodoxia en la regulación del sector eléctrico. Cuadernos de Energía 35:1–32
Schaeffer GJ, Boots MG, Martens JW, Voogt MH (1999) Tradable green certificates—a new

market-based incentive scheme for renewable energy: introduction and analysis. Energy
Research Centre of the Netherlands. ECN-I-99–004

Schmalensee R (2011) Evaluating policies to increase the generation of electricity from renewable
energy. MIT Center for Energy and Environmental Policy Research. CEEPR WP 2011-008

Sims REH, Rogner H-H, Gregory K (2003) Carbon emission and mitigation cost comparisons
between fossil fuel, nuclear and renewable energy resources for electricity generation. Energy
Policy 31(13):1315–1326

Verbruggen A (2004) Tradable green certificates in Flanders (Belgium). Energy Policy 32(2):
165–176

280 A. Ciarreta et al.



Unobserved Heterogeneous Effects
in the Cost Efficiency Analysis
of Electricity Distribution Systems

Per J. Agrell, Mehdi Farsi, Massimo Filippini and Martin Koller

Abstract The purpose of this study is to analyze the potential effects of unob-
served heterogeneity on the cost efficiency measurement of electricity distribution
systems within the framework of incentive regulation schemes such as price- or
revenue cap. In particular, we decompose the benchmarking process into two steps:
In the first step, we attempt to identify classes of distribution system operators
functioning in similar environments and with comparable network and structural
characteristics. For this purpose, we apply a latent class model. In the second step,
best practice is obtained within each class, based on deterministic and stochastic
frontier models. The results show that the decomposition of the benchmarking
process into two steps and the consideration of technology classes can reduce the
unobserved heterogeneity within classes, hence, reducing the unexplained variation
that could be mis-specified as inefficiency.
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1 Introduction

In the last two decades the electricity distribution sector in Europe has witnessed a
wave of regulatory reforms aimed mainly at improving the economic efficiency.
Thereby, information on several efficiency concepts in production theory, including
scale and scope efficiency as well as cost efficiency has become very important. The
concept of cost efficiency is a measure of the regulated electricity distribution
company’s ability to minimize costs, given specific demand and market conditions.
Cost inefficiency, also called ‘X-inefficiency’, occurs when the company fails to
produce with full efficiency at the cost frontier, defined by best-practice companies.

Regulatory authorities increasingly use empirical cost norms, such as parametric
or non-parametric benchmarking methods, in various incentive regulation schemes
(Haney and Pollitt 2009). One of the most widely used regulatory regimes in
electricity networks is price- or revenue-cap regulation (often denoted CPI-X reg-
ulation, cf. Littlechild (1983)). This method determines a maximum price or rev-
enue index in real terms, less a productivity improvement parameter, referred to as
the ‘X-factor’.1 The X-factors include a general productivity improvement
requirement (usually called the ‘general X-factor’) and potentially an individual
efficiency improvement parameter (frequently denoted the ‘Xi-factor’ or the indi-
vidual X-factor). Whereas the purpose of the general X-factor is to share the pro-
ductivity gains in the sector between the consumers and the companies, the
individual term is intended to eliminate incumbent efficiency differences between
companies. The exact translation of an estimated static cost inefficiency to an
annual real productivity target (Xi) depends on the allowed period to catch up
inefficiency, the type of inefficiency detected (capital and/or operating costs) and the
type of by-pass mechanism (Z) used for certain costs that may be proportional to the
inefficiency (e.g. network losses). Notwithstanding, the mechanism allows the
regulator to set differentiated price or revenue caps based on the individual com-
pany’s empirically estimated productive efficiency performance.2 An alternative to
the CPI-X regulation, addressing the arbitrariness of the adjustment parameters and
the risk induced by the lag, is the yardstick regulation paradigm (cf. Shleifer 1985).
In this model, the reimbursement of the regulated firm is linked to a dynamic norm,
excluding the cost report of the specific company in its calculation. Although
Shleifer presented the model for a stylized cost function, the use of frontier analysis
tools enables the application of yardstick methods also to multi-output production

1 In addition to inflation, the changes beyond companies’ control may include changes in input
factor prices and exogenous changes in demand and network characteristics, generally referred to
as ‘Z-factors’.
2 The level of productive efficiency or cost efficiency of a firm is composed by the levels of
technical and allocative efficiency. For a discussion of these concepts see Kumbhakar and Lovell
(2003).
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and service provision. Several regulators in Europe, thereof Germany and Norway,
use DEA for dynamic yardstick regimes in electricity distribution regulation.3

However, the increasing use of efficiency analysis has raised serious concerns
among regulators and companies regarding the reliability of efficiency estimates.4

In fact, empirical evidence suggests that the estimates are sensitive to the adopted
efficiency measurement approach.5 This implies that the choice of the approach
may have important effects on the financial situation of the companies as well as on
the industrial structure of the regulated sector.

One important dimension affecting the reliability of efficiency estimates is the
presence of unobserved factors. The regulated companies operate in different
regions with various environmental and network characteristics that are only par-
tially observed. This heterogeneity in the service area is an important factor to
consider in a benchmarking analysis. Recall that the purpose of the benchmarking
method is to create a cost norm for efficient, structurally comparable companies
under similar operating conditions. Some methods of estimating efficiency take
account of such unobserved factors, but in different ways. Generally, in deter-
ministic models such as the non-parametric linear programming approach, the
unobserved factors that influence the level of production costs are not considered in
the analysis. The explicit assumption in these approaches is that all relevant cost
differences are captured by observed variables. The few efficiency analysis models
addressing part of the unobserved heterogeneity factors are parametric and based on
panel data. The seminal paper for the development of models for unobserved
heterogeneous factors is Greene (2005). The main idea is to introduce an individual
effect in an econometric model capturing the unobserved heterogeneous factors that
remain constant over time. The main problem hereby is that the individual effects
can capture also part of the inefficiency that remains constant over time. In addition,
the complexity of the models developed by Greene (2005) and the entailed
assumptions remain important obstacles in applying panel data models in regulatory
practice. Given that the unobserved factors are considered differently in various
models, the resulting estimates can vary across methods. The magnitude of varia-
tion depends on the importance of the unobserved factors, which might change
from one case to another.

To address this problem, we propose an alternative strategy for improve effi-
ciency measurement methodology in the presence of unobserved heterogeneity. In
our strategy, we decompose the benchmarking process into two steps: In the first
step, we attempt to identify classes of companies that operate in similar environ-
ments and with comparable network and structural characteristics. For this purpose,
we apply a latent class model. In the second step, the best practice is obtained

3 The theory for dynamic applications of DEA in yardstick and a comparison with a conventional
CPI-X approach are found in Agrell et al. (2005a).
4 Shuttleworth (2005) provides a critical overview of the problems coming along with the use of
benchmarking in the regulation of electricity networks.
5 See e.g. Jamasb and Pollitt (2003), Estache et al. (2004), Farsi and Filippini (2004) or Farsi et al.
(2006).
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within each class, based on deterministic and stochastic frontier models. Provided
that the identified classes contain reasonably comparable cases and assuming a
reasonable explanatory power for the variables included in the model specification,
any deterministic or stochastic approach can be used to estimate efficiency.

The outline of this chapter is as follows: Sect. 1 reviews some of the most
commonly used approaches to efficiency measurement. Section 2 addresses the cost
model specifications and estimation methods. Section 3 introduces the data and
Sect. 4 provides the estimation results for both steps and measures of cost efficiency
for different frontier models in the second step. We draw our conclusions in Sect. 5.

2 Review on Approaches to Efficiency Measurement

This section briefly reviews some of the most commonly used frontier approaches
to cost efficiency measurement, based on more extensive reviews in Kumbhakar
and Lovell (2003), Murillo-Zamorano (2004), Coelli et al. (2005), Cornwell and
Smith (2008), Greene and William (2008), Kumbhakar and Lovell (2003), and
Farsi and Filippini (2009).6 The focus here is mainly on cost efficiency and on cost
functions, the argumentation is analogously valid for production functions and
productive efficiency (under a set of regularity conditions, cf. Shepard (1953) and
Nerlove (1963)). The frontier approach assumes that full cost efficiency is defined
by those companies that are identified as the best-practice peers. All other com-
panies are assumed to operate above the cost frontier, hence to have non-zero
inefficiency.

Economic literature has developed two different frontier paradigms to empiri-
cally measure cost efficiency.7 The first is based on a non-parametric deterministic
and the second on an econometric approach, sometimes also referred to the para-
metric approach.

Non-parametric approaches, such as the Data Envelopment Analysis (DEA),
proposed by Farrell (1957) and Charnes et al. (1978), use linear programming to
construct a company’s efficiency frontier, which is considered as a deterministic
function of the observed variables. These methods are non-parametric in the sense
that they do not impose any specific functional form or distribution assumption, i.e. it
is assumed that the data are free of noise. Thanks to their relative simplicity and
availability, such methods, in particular DEA, are quite popular among both
researchers and regulators in energy distribution networks. The DEA models can be
input- or output-oriented and one of the a priori assumptions concerns the returns to
scale. The models can be specified as constant returns to scale (CRS), variable returns

6 The latter review includes also sections on the traditional production theory and on scale and
scope economies.
7 A third paradigm, the Bayesian approach is only little-known in applied science. Readers
interested in Bayesian stochastic frontier models (sometimes also assigned to non-parametric
models) are referred to van den Broeck et al. (1994).
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to scale (VRS), non-increasing returns to scale (NIRS), non-decreasing returns to
scale (NDRS), free disposal hull (FDH) and free replicability hull (FRH), where the
latter two merely impose disposability and additivity, but not convexity of the pro-
duction space. A basic DEA formulation calculating the minimal cost under VRS for
company i in a sample of N companies with k inputs and m outputs would be

min
k;xi

w0
ixi

s: t: : �yi þ Yk� 0; xi � Xk� 0; N 0k ¼ 1; k� 0
ð1Þ

where wi and xi are k × 1 vectors representing input prices and quantities for
company i; yi is an m × 1 vector representing the given output bundle; X and Y are
input and output matrices namely, a k × N and an m × N matrix consisting of the
input and output bundles for all companies in the sample; N is an N × 1 vector of
ones; and λ is an N × 1 vector of non-negative constants to be estimated. The VRS
property is satisfied through the convexity constraint (N’λ = 1) that ensures that only
similar-sized companies are benchmarked against each other. The linear program-
ming algorithm finds a piece-wise linear isoquant in the input-space, which cor-
responds to the minimum costs of producing the given output at any given point.
Cost efficiency (CE) finally is measured by the minimum feasible input bundle for
each company relative to its actual input bundle, i.e. CEi ¼ w0

ix
�
i =w

0
ix
0
i .

In contrast to non-parametric methods, most of the econometric approaches
include estimating an empirical cost function, where the observed variables should
include a vector of outputs (q) and a vector of input prices (p). The remaining
unobserved part, the residual, is completely (in deterministic models) or partially (in
stochastic models) assigned to inefficiency.

The first econometric frontier models that appeared in the literature were
deterministic and estimated by OLS. Usually, their cost function is expressed in
logarithms as

lnCit ¼ f qit; pit; bð Þ þ aþ eit ð2Þ

where Cit is total cost incurred by the unit i at time t, f(.) is a parametric cost
function, qit and pit are vectors of outputs and input prices, respectively, β is the
vector of parameters and α the intercept to estimate, and εit is the residual. As the
error term in deterministic models only reflects the inefficiency, it is assumed to be
non-negative. Therefore, Winsten (1957) suggested shifting the estimated intercept
down by the minimal residual value. This model is called Corrected OLS (COLS).
The cost efficiency of unit i in the COLS model is thus given by exp(−uit) with
uit = εit – min(εit) ≥ 0. Afriat (1972) proposed a slightly different model, usually
referred to as Modified OLS (MOLS), where the OLS intercept is shifted by the
expected value of the inefficiency term that is, E(uit). The cost efficiency of unit i at
time t in the MOLS model is thus given by exp(−uit) with uit = εit + E(uit). The
efficiency term uit is not necessarily positive (some units are below the cost fron-
tier). Truncation at zero assigns the respective units with full efficiency.
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Deterministic models are similar to DEA and other linear programming models
in that the best practice (the cost frontier) is a fixed function that does not vary
across observations or units. As main drawback, these models attribute the residual
entirely to inefficiency, i.e. they do not account for other sources of stochastic
variation such as measurement errors.8,9 Nevertheless, deterministic models are still
widely used in applied economic literature and in regulation (see e.g. Haney and
Pollitt (2009)).

To overcome the drawbacks of deterministic models, Aigner et al. (1977) and
Meeusen and van den Broeck (1977) proposed a stochastic frontier model (SFA),
which divides the residual εit into two parts: uit is reflecting inefficiency, and vit is
capturing the random noise. The basic cost function of the stochastic frontier model
can be written as

lnCit ¼ f ðqit; pit; bÞ þ aþ uit þ vit ð3Þ

With certain distribution assumptions on uit and vit, this model can be estimated
using the Maximum Likelihood (ML) estimation method. Typically, it is assumed
that the inefficiency term uit has a one-sided non-negative distribution that is, a
normal distribution truncated at zero: uit * |N(0,r2u)|,

10 and the random noise term
vit is normally distributed: vit * N(0,r2v ). Additionally, uit and vit are considered as
being independently distributed from each other. As in the models above, one
would expect the most efficient unit to take uit = 0, and the efficiency value to be
calculated as exp(−uit). Unfortunately, E(uit) cannot be calculated for an individual
unit. Jondrow et al. (1982) proposed therefore a different estimator to measure
efficiency. This estimator is based on the conditional expectation function of the
residual, (E[uit|εit]), and is known as the JLMS estimator referring to the authors.11

This is a highly non-linear function that only slightly increases the inefficiency for
units close to the frontier leaving no unit with full efficiency. The other estimator
proposed by these authors is based on the conditional mode (M[uit|εit]) that nor-
mally assigns full efficiency to several units. It has been used much less in the
empirical literature than the JLMS estimator.

8 Semi-parametric frontier models such as quantile regression (Koenker and Bassett 1978)
sometimes count as deterministic models. Unlike least squares methods, quantile regression
techniques do not approximate the conditional mean of the response variable, but either its median
or quantiles and offer therefore a systematic strategy for examining the entire distribution of the
population. Readers interested in applied quantile regression models for efficiency measurement
are referred to Behr (2010) and to Knox et al. (2007).
9 In real regulatory application, regulators use specific outlier detection and elimination methods
to reduce the impact of, and incentives for, errors in the reference set, see Agrell and Niknazar
(2014).
10 Other extensions of the SFA model have considered exponential, gamma, or truncated normal
distributions for the inefficiency term.
11 Jondrow et al. in (1982).
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The models described so far can be applied either to cross-sectional or panel
data. However, the panel structure in the data is ignored, as these models require
pooling all observations and treating them as being independent from each other.
Temporal variations can be captured using time trends or time-interactions.
Moreover, these models are not suited to account for unmeasured, i.e. unobserved
heterogeneity. This is due to the fact that with pooled data, each observation is
considered as a single, discrete unit. With only one observation per unit, it is not
possible to disentangle efficiency and time-invariant, unit-specific heterogeneity.
Therefore, the presence of unobserved heterogeneity influences the estimation
results of the regressors in case of correlation, or the residuals (referred to heter-
ogeneity bias, Chamberlain (1982)). The structure of panel data offers the oppor-
tunity to apply models that account for the individual effect that should capture the
unobserved heterogeneity and hence free from the heterogeneity bias. The time
dimension in panel data sets allows us to observe the same unit repeatedly over a
certain time span. This enables us to extract time-invariant factors such as unit-
specific characteristics that do not necessarily accrue to the unit’s inefficiency, but
do affect the costs across different networks. Especially structural inefficiencies
(inefficiency that is constant over time) and inefficiencies following a certain time
path can be better identified using panel data. Most of the developments of the panel
data models go back to the stochastic frontier models of Aigner et al. (1977) and
Meeusen and van den Broeck (1977) expressed in Eq. (3).

An early application to panel data of this stochastic frontier model was the
Random Effects (RE) model by Pitt and Lee (1981) which was estimated by ML and
assumed that the inefficiency uit is fixed through time, but still half-normally dis-
tributed: ui * |N(0,r2u)|. Important variations of this model were presented by
Schmidt and Sickles (1984) who relaxed the distribution assumption, and by Battese
and Coelli (1988) who assumed a truncated normal distribution. Schmidt and Sickles
(1984) also proposed a Fixed Effects (FE) model to avoid the possible heterogeneity
bias in case of correlation of uit with the explanatory variables. One of the drawbacks
of models with time-invariant efficiency is that time-varying components of heter-
ogeneity are entirely interpreted as random noise. Therefore, Cornwell et al. (1990),
Kumbhakar (1990) and Battese and Coelli (1992) suggested the first stochastic
models allowing the cost efficiency to vary over time. However, the first two models
developed were vulnerable to multicollinearity and the third was characterized by a
deterministic functional form of the inefficiency term over time.

The main restriction of all of the models presented above is that unobserved
factors are assumed to be random over time. This implies that time-invariant factors
such as physical network and environmental characteristics are not considered as
heterogeneity. The family of ‘true’ panel data models (Kumbhakar 1991) and
Polachek and Yoon (1996) as precursor models of Greene (2005) extend the ori-
ginal stochastic frontier model as it is formulated in Eq. (3) by adding a unit-specific
time-invariant factor accounting for the individual effect.12 Hence, apart from the

12 The term ‘true’ refers to the FE and RE models fully described in Greene (2005).
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random noise component, these models include two stochastic terms for unob-
served heterogeneity, one for time-varying and one for time-invariant individual
effects. This model can be written as

lnCit ¼ f qit; pit; bð Þ þ ai þ uit þ vit ð4Þ

where αi is the time-invariant unit-specific factor and the model is estimated by
Maximum Simulated Likelihood (MSL). In a RE framework, αi is an iid random
component and must not be correlated with the observed variables. In a FE
framework, αi is a constant parameter for every unit.13 As in all ML models, the
inefficiency component can be measured by the JLMS estimator of Jondrow et al.
(1982). Assuming that physical network and environmental characteristics do not
vary considerably over time and that the inefficiency is time-varying, these models
help to separate unobserved time-invariant effects from efficiency estimates.
However, if inefficiency is persistent over time, these models underestimate the
inefficiency systematically, e.g. if managers take wrong decisions in every period or
make the same mistakes again and again, the corresponding consequences in terms
of inefficiency are detected as time-invariant unit-specific heterogeneity and not as
inefficiency. As noted in Greene (2008), the ‘truth’ doubtless lies somewhere
between the two strong assumptions.

The idea of observed parameter variability was early applied to a precise indi-
cation of heterogeneity of the production environment by Kalirajan and Obowona
(1994) in the stochastic frontier context. A similar random parameter (RP) model
was also formulated by Greene (2005), which is a generalization of the True Effects
models in that not only the constant but also the parameters of the observed vari-
ables are unit-specific indicating the effect of different environments or technolo-
gies. This model is estimated by MSL. As noted by Greene (2008), the estimation
of the MSL of this model can be numerically cumbersome.

Another approach to accommodate heterogeneity among units into the model is
followed by latent class (LC) models. Originally introduced by Lazarsfeld and
Henry (1968), LC identifies distinct class membership among subjects regarding
their cost structure and estimates a separate cost function for each of these classes
simultaneously.14 LC models can be regarded as the discrete counterparts of RP
models. With a sufficient large number of classes, LC approximates a fully
parameterized RP model. The LC model can be written as:

lnCit ¼ f qit; pit; bj
� �þ aj þ uit j þ vit

�� ��
j ð5Þ

13 An alternative version of the True FE model uses dummy variables for every unit. However,
this specification may be affected by the ‘incidental parameter problem’, especially in short panel
data sets.
14 Latent class analysis has been applied in different fields of science and industry sectors, e.g. in
the banking sector (Orea and Khumbhakar 2004) or more recently in the electricity distribution
(Cullmann 2010).
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The subscript i denotes the unit, and uit and vit are defined as above. αj is the
constant and βj is a vector of discrete random parameters identified in j = 1, 2, …,
J classes, assuming that each observation in the sample follows a specific tech-
nology. These technologies differ from each other in the values of model parameters
{αi, βi, σi}. This vector includes also a set of prior probabilities that determines the
fraction of each latent class in the sample. It is defined as a discrete random vector
with the following distribution:

ai; bi; rif g ¼ aj; bj; rj
� �

with probability Pj; where : j ¼ 1; 2; . . .; J; and
XJ

j¼1

Pj ¼ 1 ð6Þ

The subscript j denotes the latent class with J being the number of classes. The
choice of J is usually based on diagnostic criteria such as the Akaike Information
Criterion (AIC) or the Bayesian Information Criterion (BIC).15 These criteria
indicate the optimal number of classes from an informational perspective, but
cannot be used for statistical inference. After the estimation of the LC model,
posterior probabilities bPj can be calculated for each observation from Bayes rule.

The choice of the econometric models presented so far is usually not straight-
forward. For instance, Farsi and Filippini (2009) have found several studies that
report discrepancies in efficiency estimates between different models and approa-
ches.16 Such discrepancies are partly due to methodological sensitivity in the
estimation of individual efficiency scores and partly due to different consideration
of unobserved heterogeneity factors, which are particularly relevant in network
industries such as electricity distribution. Panel data models can be used to control
for the firm- or network specific unobserved heterogeneity. The use of panel data
models is especially interesting as data for several years have become available to
an increasing number of regulators in many countries. The complexity of such
models remains however an important obstacle in applying panel data models in
regulation. The effort in disentangling inefficiency variations from unobserved
factors such as statistical noise due to error and omitted variables is a crucial
element of all frontier models, in both cross sectional and panel data. The statistical
modeling challenge has a parallel in practice: benchmarking can only be effective to
the extent that for any specific company with given characteristics, there exists a set
of comparable companies upon which a ‘best practice’ can be constructed.

Therefore, as previously discussed, we propose an alternative strategy in this
paper to consider unobserved heterogeneity factors in that we decompose the

15 However, compared to the BIC, the AIC corrects the likelihood function only by the sample
size and not by the number of parameters to estimate. This is a clear disadvantage with increasing
number of classes.
16 See e.g. Jensen (2000), Jamasb and Pollitt (2003), Street (2003), Estache et al. (2004), Farsi and
Filippini (2004). The results show substantial variations in estimated efficiency scores and, for
some of them, in efficiency rankings across different approaches (econometric and non-parametric)
and among model specifications.
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benchmarking analysis into two steps: In the first step, we attempt to identify
classes of companies that operate in similar environments and with comparable
network and structural characteristics. For that step, we use a latent class model. In
the second step, best practice is obtained within each class applying different
benchmarking methods. Provided that the identified classes include reasonably
comparable cases and assuming a reasonable explanatory power for the variables
included in the model specification, any deterministic or stochastic approach can
provide accurate values of efficiency. Therefore, we use the DEA, MOLS and SFA
methods for the second step. In the next section, we will apply this approach using a
sample of Norwegian electricity distribution companies.

3 Cost Model Specification and Estimation Methods

We specify a cost model that explains total costs of the Norwegian electricity
distribution system operators (DSO) with two input and one output variable, one
environmental factor and one network characteristics. We write this model as
follows:

TC ¼ f ðPL; PC; Q; D; SÞ ð7Þ

where the dependent variable TC represents the total costs of the DSO. PL and PC

are the input prices of labor and capital, respectively. Q is the delivered electricity,
D the network density and S, finally, the share of high voltage network. For a
complete description of the data and variables, see Sect. 4.

For the identification of the comparable technology classes in the first step, we
apply a Latent Class (LC) approach (cf. Lazarsfeld and Henry (1968), see Sect. 2)17

to estimate the cost model in Eq. (7).18 Using a Cobb-Douglas functional form and
imposing the linear homogeneity restriction, the LC model in Eq. (5) can be adapted
to:

ln
TCit

PCit
¼ a0j þ bPj ln

PLit

PCit
þ bQj lnQit þ bDj lnDit þ bLSjSit þ eit jj ð8Þ

where subscript i denotes the electricity distribution company i = 1, 2, …, I, sub-
script t the years 1998–2002, and εit * N(0,σi) the error term. The subscript
j denotes the latent class with J being the number of classes.

After the identification of comparable technology classes, we estimate the cost
efficiency in the second step separately for each class. As the heterogeneity within

17 Different models could be considered to identify technology classes. LC is a statistical method
that has been used in literature to identify classes (see Orea and Khumbhakar (2004) or Greene
(2005)).
18 All estimations have been conducted by Nlogit software version 4.0.
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classes is expected to be low due to comparable technologies, any deterministic or
stochastic approach can be considered. For general overviews on approaches to
efficiency measurement, see e.g. Murillo-Zamorano (2004) or Greene (2008), or,
for an empirical application, Farsi and Filippini (2009). With respect to current
regulatory practice (see Haney and Pollitt (2009) for an overview over 40 coun-
tries), we apply the three following, most prevalent methods: The Data Envelop-
ment Analysis (DEA, proposed by Farrell (1957) and Charnes et al. (1978)), the
Modified OLS (MOLS, proposed by Afriat (1972)) and the Stochastic Frontier
Analysis (SFA, proposed by Aigner et al. (1977)).

DEA is a non-parametric method to calculate cost efficiency as a deterministic
function of the observed variables, i.e. it is assumed that the data are free of
stochastic variation due to measurement errors or noise. The cost model given in
Eq. (7) can be readily used for the efficiency measurement with the DEA method.
Assuming variable returns to scale (VRS), the Eq. (1) reduces to the following
minimization problem:

min
k

TCit

s: t: : �Yit þ Yk� 0; TCit � TCk� 0; N 0k ¼ 1; k� 0
ð10Þ

where Yit represents the vector of the output bundle including output Qit and output
characteristics Dit and Sit, as both characteristics take resources. However, in the
DEA model, D is defined as the inverse of the network density, since a higher
network density implies lower costs. N and λ are vectors of ones and non-negative
constants, respectively. Cost efficiency (CE) is measured as the minimum feasible
costs for each company relative to its actual costs, i.e. CEit = TC*/TCit.

MOLS and SFA are parametric methods that use regression techniques to
construct the efficiency frontier. Both require the specification of a functional form
of the cost function as well as assumptions about the error term(s). Similar to
Eq. (8) in the first step, we estimate cost model in Eq. (7) using a Cobb-Douglas
functional form and impose the linear homogeneity restriction. The MOLS and
SFA models in Eqs. (2) and (3) can be adapted to:

ln
TCit

PCit
¼ a0 þ bP ln

PLit

PCit
þ bQ lnQit þ bD lnDit þ bLSSit þ eit ð11Þ

The MOLS approach is based on the OLS estimation. The residuals εit are
corrected using a constant shift, which is the expected value of the inefficiency
term, E(uit). The cost efficiency in the MOLS is thus deterministic and given by
CEit = exp(−uit) with uit = εit + E(uit). uit is not necessarily positive, as some units
may lie below the cost frontier. Truncation at zero assigns the respective units with
full efficiency.

The SFA approach is based on the Maximum Likelihood estimation. The
residuals εit are composed of the inefficiency term uit and the random noise term vit.

Unobserved Heterogeneous Effects in the Cost Efficiency Analysis… 291



In this study, it is assumed that uit follows one-sided non-negative distribution, i.e. a
normal distribution truncated at zero: uit * |N(0,r2u)|, and that vit is normally
distributed: vit * N(0,r2v). Additionally, uit and vit are considered as being inde-
pendently distributed from each other. The cost efficiency in the SFA is thus
stochastic and given by CEit = exp(−uit).

In order to compare the results from this two-step approach with that of a
conventional analysis, we estimate the three models (DEA, MOLS, SFA) also in
one step, i.e. without consideration of classes, but for the whole sample. The
resulting tables are given in the Appendix.

4 Data

The data we use for this study consist of a balanced panel of 555 observations from
111 companies that have operated in the Norwegian power distribution sector from
1998 to 2002.19 The available information includes total costs, labor costs, full time
equivalents, total transformer capacity, distributed electricity, number of customers,
line length for each low and high voltage, and year dummies. Table 1 provides a
descriptive summary of the balanced panel data set for the variables included in the
models.

From this data, we calculated the variables included in the models as follows:
The dependent variable (TC) is the total network costs excluding the cost of pur-
chased electricity. It is measured in millions Norwegian Kroner (NOK) and is in
real terms; hence it is adjusted for inflation. TC includes all DSO’s network costs
consisting of both operating and capital expenditures. The explanatory variables
involve two input price variables, one output variable and one environmental and
one network characteristic, hence the DSO’s are here considered to be single-
product firms. The input price variables include a price for labor (PL) and a price for
capital (PC). We derived PL by dividing labor costs by the number of full-time
equivalents. PC is an approximation to the real capital price, calculated as a residual
price by dividing non-labor costs by the installed transformer capacity. The output
is given by the delivered electricity (Q), measured in gigawatt hours (GWh). The
environmental variable is the network density (D), represented by total number of
customers divided by total network length in kilometers. The network characteristic
(S) is modeled by the share of high voltage network length and total network
length.

19 In order to get a balanced panel data set, we extracted this data from the data that has been used
in several scientific studies (Agrell et al. (2005a, b)) as well as in a research project financed by the
Norwegian Water Resources and Energy Directorate partly reported in Agrell and Bogetoft (2009)
and a research project financed by Swiss Federal Institute of Energy reported in Filippini et al.
(2011).
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5 Results

In the first step, we first determine the optimal number of classes J of the LC model.
Using the model specification in Eq. (8), we applied LC models to the data in
Table 1 with two to six classes.20 The specification diagnostics obtained by this
analysis show that J = 4 is the optimal number of classes for the BIC and J = 6 for
the AIC. In cases with J > 4, we observed some implausible values for the
regression coefficients, e.g. statistically insignificant values for the output. Con-
sidering the appealing statistical features of the BIC, we adopted this criterion and
selected four classes.

The estimation results of this LC model estimated in the first step are summa-
rized in Table 2. These results show four distinctive technology classes with sig-
nificant coefficients in most of the cases. Differences in the coefficients indicate that
there are variations in marginal costs and technological characteristics across these
classes. We see throughout all classes that total cost increases with higher input
prices and higher outputs and in three classes with an increasing share of high
voltage networks. As expected, operation with density reduces costs. Differences in
coefficients indicate that there are variations in marginal costs and technical char-
acteristics across classes. Prior class probabilities indicate also different class sizes.

Table 3 provides a descriptive summary of the observed variables for each class
as identified by the estimated posterior class probabilities. These probabilities show
that the operators can be distinguished with high probabilities. The fact that even in
the worst cases, minimum probabilities are greater than 0.5 suggests that operators
can be classified without ambiguity. The resulting classes have at least 100
observations, which is large enough for reasonable degrees of freedom for the
second step estimations. The values of the observed variables in each class indicate
that we can distinguish in an approximate manner certain features that characterize
each class. Class 1 faces low input prices and a high customer density, whereas
Class 2 has high input prices and medium customer density. Classes 3 and 4 face
intermediate values for most of the variables except for a relatively low customer
density in Class 3.

The estimation results for the MOLS and the SFA estimated in the second step
for each class separately are summarized in Table 4. Other than the first step, the
estimations are based on cost model specification in Eq. (11) and on subsamples of
the data in Table 1, given by the four classes of the first step. In general, the
coefficients are of the same magnitude as in the LC model in the first step. The
coefficients of the MOLS and the SFA differ slightly because of different
assumptions on the error term. The signal-to-noise ratio λ is significant for three
classes indicating skewness and existence of inefficiency. The insignificant value of
λ in class two means that standard errors of the inefficiency terms are low compared
to that of the noise terms, which will results in low inefficiency values for this class.

20 Using several specifications, we also tried models with seven or more classes. Due to non-
convergence we could not estimate any models with more than six classes.
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The results of the efficiency analysis for the four classes and three models each
are summarized in Table 5. The average efficiency value ranges from 0.56 for DEA
in Class 1 to 0.98 for SFA in Class 2. In general, the average efficiency values are
lowest in Class 1 for all three models and highest in Class 2 for MOLS and SFA.
The highest average efficiency value for DEA is in Class 3 with 0.81. The standard
deviations are highest in Class 1 for all three models and lowest in Class 2 for SFA,
indicated already by the insignificant lambda in Table 4. Throughout all three
models, SFA produces higher efficiency values than DEA and MOLS. This is
expected since the model considers statistical noise. Another typical feature is that
whereas DEA and MOLS assign full efficiency to several observations, SFA does
not classify any operator as fully efficient. The minimum values are low in Class 1
for all three models. In particular, DEA attributes considerably lower minimum
efficiency estimates for all classes than the other models.

In general, the efficiency values are higher and more realistic than the corre-
sponding scores of a conventional analysis performed in one step (given in Table 7
in the Appendix). The decomposition of the benchmarking process into two steps
and the consideration of technology classes has reduced unobserved heterogeneity
within classes and, hence, reduced the unexplained variance previously claimed as
inefficiency. Therefore, conventional cross-sectional or pooled models might
underestimate cost efficiency.

6 Summary and Conclusions

Regulatory authorities increasingly use benchmarking practices to identify a com-
pany’s individual efficiency in various incentive regulation schemes such as price-
or revenue cap. The identification of cost efficiency in electricity distribution is a
challenging task, as the companies operate in different regions with various envi-
ronmental and network characteristics that are only partially observed. Therefore,
the purpose of this study was to analyze cost efficiency in electricity distribution
under consideration of these unobserved heterogeneity factors.

In order to disentangle cost efficiency variations from unobserved factors, we
proposed an alternative strategy that decomposes the benchmarking process into
two steps: The first step is to identify classes of comparable companies in order to
reduce unobserved heterogeneity within classes and the second to obtain the best
practice for each class.

The analysis in the first step has revealed four distinct latent classes. These
classes can be characterized in an approximate manner by different observed
variables, mainly by input prices and customer density. The analysis in the second
step applying DEA, MOLS and SFA frontier methods has shown that average
efficiency values vary considerably among methods and classes. In general, DEA
has produced lowest and SFA highest values. Companies in Class 1 are on average
considerably less efficient than companies in the other classes, and the variation in
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efficiency scores in Class 1 is highest. This class involves clearly the largest and
most heterogeneous companies concerning output.

Most importantly, the efficiency values are generally higher and more plausible
than the corresponding scores of a conventional single-step analysis. The decom-
position of the benchmarking process into two steps and the consideration of
technology classes has reduced unobserved heterogeneity within classes and, hence,
reduced the unexplained variance previously claimed as inefficiency. Therefore,
conventional cross-sectional or pooled models might underestimate the real cost
efficiency values. This in turn could lead to too incommensurate regulatory mea-
sures in account of the affected companies, especially if price or revenue cap
regulation as incentive regulation scheme is in force.

7 Appendix

See Tables 6 and 7.

Table 6 Estimation results for MOLS and COLS, conventional analysis

Variable MOLS
Coefficient (SE)

SFA
Coefficient (SE)

Input price ratio (P) 0.6827 *** (0.024) 0.6637 *** (0.024)

Distributed electricity (Q) 0.9328 *** (0.011) 0.9327 *** (0.011)

Density (D) −0.3423 *** (0.028) −0.3226 *** (0.024)

Share HV network (S) 0.7258 *** (0.091) 0.7679 *** (0.080)

Constant 4.8223 *** (0.009) 4.5888 *** (0.011)

Sigma: σ2 = σu
2 + σv

2 0.3175 *** (0.001)

Lambda: λ = σu/σv 2.2973 *** (0.229)

***, **, *: significant at 1 %, 5 % and 10 %, respectively N = 555

Table 7 Efficiency scores,
conventional analysis

DEA MOLS SFA

Mean 0.554 0.762 0.802

SDev 0.151 0.148 0.104

Min 0.246 0.319 0.498

p25 0.453 0.645 0.727

Median 0.527 0.769 0.827

p75 0.625 0.871 0.887

Max 1 1 0.960

T = 5 (1998–2002), i = 111, N = 555
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