

AXENS' IRAN SEMINAR PAVING THE WAY TO A HIGHLY COMPETITIVE IRANIAN REFINING INDUSTRY TEHRAN - 29/30 TIR 1395 (19/20 JULY 2016)

Sulfur Recovery Catalysts

Driving Sulfur Recovery towards Excellence

Dr. Fabien Porcheron

Agenda

Introduction

- Sulfur Recovery Unit Catalysts
- Hydrogenation Based Tail Gas Treating Unit Catalysts
- Conclusions

VCMStudy.ir

Global Refining Scheme

Claus Process

Axens' Iran Seminar – 19-20 July 2016 – Paving the Way to a Highly Competitive Refining Industry

Agenda

Introduction

Sulfur Recovery Unit Catalysts

- Hydrogenation Based Tail Gas Treating Unit Catalysts
- Conclusions

Claus Catalysts Portfolio

Туре	Name	Shape
Alumina (Al ₂ O ₃)	CR 3-7 Standard Claus catalyst 300+ references CR-3S Optimized Claus catalyst 300+ references	
Titania (TiO ₂)	CRS 31 Used for very high sulfur recovery Recommended for high COS & CS_2 hydrolysis yield 300+ references	

VCMStudy.ir

Thermodynamics of the Claus Reaction

Claus Alumina CR 3-7

- Al₂O₃ is a well-known Claus active component
- CR 3-7
 - Standard Alumina Catalyst
 - Beads shape

- Macroporosity (>750 Å) of CR 3-7 is one of the highest on the market
- Suited for basic priorities: simple conversion & low pressure drop requirements are imposed
- This low-cost catalyst is attractive when there are no specific processing constraints

Can we further optimize the catalyst structural & chemical properties to reach higher yields?

VCMStudy.ir

Of the Importance of Macroporosity

Large S₈ molecules ⁽⁵⁾ have to get out of the catalyst porosity

- Micropores (<30 Å) quickly plugged by liquid sulfur
 - inactive -
- Mesopores (30-100 Å)
 difficult diffusion
- Macropores (>750 Å) easy diffusion
- Ultra-macropores (>10 000 Å)
 even better

Macroporosity has to be tuned in order to minimize the diffusion constraints VCMStudy.ir

Claus Alumina CR-3S Pore Size Distribution

VCMStudy.ir

Claus Process

Claus Alumina CR-3S Soda Content

Na₂O content has to be in between 1500 and 2500 ppm Competition products contain 3500 ppm Na2O Additional step required to manufacture CR-3S

Claus TiO₂ Catalyst

• TiO₂ is the ultimate Claus active component

- Reaches Claus reaction thermodynamics equilibrium
- Total COS and CS₂ hydrolysis
- Allows debottlenecking
- Very long life time & resistant to sulfation

• CRS 31

- Titanium dioxide based Catalyst
- Cylindrical extrudates shape in 3.5 mm

VCMStudy.ir

Best Strategy for TiO₂ – Option 1

CRS 31 layer in R₁

- Full COS-CS₂ hydrolysis
- Higher overall recovery
- Similar life time than alumina loading

Best Strategy for TiO₂ – Option 2

Full CRS 31 loading

- Outstanding sulfur recovery (thermodynamic limitation)
- Extended life time (> 10 years)
- Possible throughput increase

Agenda

- Introduction
- Sulfur Recovery Unit Catalysts
- Hydrogenation Based Tail Gas Treating Unit Catalysts
- Conclusions

Hydrogenation Based Tail Gas Treating Units

Principle = A small HDT unit

- Transformation of Sulfur species into H₂S
- Recycling of H₂S to the Claus furnace

Hydrogenation Catalysts Portfolio

CoMo catalysts

Shape	Beads 2-4 mm	Trilobes 2.5mm
Conventional Temperature	TG 103 - High density, high activity TG 203 low density, low cost	sed 015
Low Temperature	TG 107 - High density, high activity, the original LT catalyst	TG 136 - Lower density, lower deltaP

Conventional Temperature Catalysts

Axens' Iran Seminar – 19-20 July 2016 – Paving the Way to a Highly Competitive Refining Industry

Low Temperature Catalysts

A Revolution for Existing / New Units

Operation at low temperature

- 40 % savings on energy
 Catalyst payback < 1 year
- Lower CO₂ emissions
- Tripled temp. safety margin From direct to indirect reheater
 - Less risk of misoperations (soot or excess air)
 - Longer catalyst lifetime
 - Equipment downsized 10%
 - Capex reduction 10-15%
 - OpEx reduction 20%

Ref.: Marco van Son, Sept. 15th 2005 Brimstone, Vail (CO)

Agenda

Introduction

- Sulfur Recovery Unit Catalysts
- Hydrogenation Based Tail Gas Treating Unit Catalysts
- Conclusions

Driving Sulfur Recovery Towards Excellence

Axens pioneered every evolution in sulfur recovery catalysis over the past 50 years:

- Al₂O₃/TiO₂ hybrid : CRS 21 (1972)
- Fe Oxygen scavenger: AM (1976) & AMS
- Pure TiO₂: CRS 31 (1984)
- Optimized Alumina: CR-3S (1994)
- LT hydrogenation: TG 107 (2004) & TG 136
- BTX management: CSM 31 (2007)
- Low turndown catalyst: CR-3S LG (2014)
- HT hydrogenation catalyst: TG 203 (2015)

Focusing on the benefits of our customers made us Sulfur recovery catalyst World leader

VCMStudy.ir

Axens Complete Portfolio for SRU

Claus Catalysts

- CR: Claus alumina
- CR-3S: Improved Claus alumina
- DR Series: Active bed supports
- CRS 31: Titanium dioxide catalyst
- AM & AMS: Oxygen scavengers
- CSM 31: BTX management

Tail Gas Treatment Catalysts

- TG 103: TG hydrogenation catalyst, spherical
- TG 203: TG hydrogenation catalyst, spherical
- TG 107: Low temperature TG hydrogenation catalyst, spherical
 - TG 136: Low temperature TG hydrogenation catalyst, extrudate

Thank you! And see you on Axens' Blog axens.net/blog

