18-19th , July , 2016, Parsian Azadi Hotel, Tehran, Iran

Methanol+Toluene to Xylenes

SINOPEC MTP and MTX technologies

July 18th, 2016

CONTENT

- 200 KTA industrial demonstration

Olefins are closely related to our daily life

Technical Routes for Producing olefins

- Feedstock for traditional routes to olefin mainly depends on oil
- Is there any other source of ethylene and propylene?
- Natural Gas/Coal to Chemicals is becoming a promising technical route

SINOPEC TECH

Typical S-MTP Process

Simplified PFD of S-MTP Process

Maximum of Ethylene & Propylene CH4&H2 C1~C2 **Methanol** Ethylene Ethane **Compress Propylene** Reaction Quench **Oxide** Distillation **Propane** Removal Gasoline Waste C4~C6 Oxygenate LPG Water

Optional S-MTP Process

MTP know how

SINOPEC TECH

•	Adiabatic multistage- layered fixed-bed Reactor Low energy consumption separation system Catalyst with long cycle length		ZSM-5 DEELE b c a		
	Reaction	n	$\Delta G/(kJ/mol)$	$\Delta H(kJ/mol)$	
		2	-115.1	-23.1	
	$nCH_3OH \rightarrow (CH_2)_n + nH_2O, n=2,3,4$	3	-186.9	-92.9	
		4	-241.8	-150.0	

MTP: Strong exothermic reaction

MTP Catalyst Deactivation

- MTP catalyst:ZSM-5 zeolite
- After 500-800 hours operation, MTP catalyst regeneration is needed.

Coke covered the active sites and led to deactivation of the catalyst

Synthesis of ZSM-5 with small particle size

Catalyst with smaller crystals size shows better stability

MTP Catalyst Deactivation

Sinopec Know-How

ZSM-5 with small crystal size —improve the resistance to coking

Full crystalline ZSM-5 catalyst

Synthesis of ZSM-5 with small particle size

A model for Coke on zeolite with different particle size

SINOPEC TECH

Full crystalline ZSM-5 catalyst

- Shaping of commercial catalyst
 - Extrusion
 - Pilling
 - Spray drying

30-70 wt.% of binder is added

Advantages

- **Good mechanical strength**
- **Easy to shape**

Disadvantages of binder addition

- Binder is inert, no active center
- Binder covers catalytic active centers
- Hinder diffusion of reactant

Full crystalline ZSM-5 catalyst

SINOPEC MTP Catalyst

SINOPEC TECH

- Binders is transferred into ZSM-5
- Qualified mechanical strength

SINOPEC MTP Catalyst

	Full crystalline catalyst	Conventional catalyst	Improvement
Crystallization (XRD)	130	100	30%
BET (m²/g)	350	277	26.4%

- Crystallization degree increased by 30%
- Surface area (BET) > 350 m²/g, increased by 26.4%
- The volume of micropore and mesopore increased by 48% and 79% respectively

VCMStudy.ir

Catalytic performance of MTP

- The catalyst cycle time is over 2000h (83days)
- Catalyst can be manufactured in large scale.

S-MTP Demo unit

- **S-MTP** Demo unit was started up in December 2012.
- **Selectivity of propylene is over 66%.**
- **Reactor and reaction process have been commercially proven.**

- SINOPEC is devoting to develop S-MTP packaged technology, the MTP process design package (propylene capacity is 500 KTA) has been finished in Sep 2013.
- Over **70** patents on S-MTP have been applied.

Gas Distribution Reactor Inlet

CONTENT

- MTP
 Introduction
 - S-MTP process
 - S-MTP catalyst
 - Latest advance of S-MTP
- ♦ MTX
 - Technical background
 - MTX Technology
 - 200 KTA industrial demonstration

Technical background

PX demand increases by 20% annually, approaching 20MTA in 2015

Technical background

Technical Background

Xylenes output can be increased by 30-50% by introducing methanol into PX complex

VCMStudy.ir

SINOPEC TECH

Technical Background

Commercialized in 2014.

SINOPEC is the first company to introduce to PX production.

MTX Technology

200 KTA industrial demonstration

It's the first time that methanol was converted into aromatics complex in industrial scale in the world.

Performance

- Toluene conversion ≥ 30wt%
- Xylene selectivity ≥ 80wt%
- EB/C₈A=0.5%

200 KTA industrial demonstration

High performance catalyst

Application

Advantages of toluene methylation process:

Diversification of raw materials using methanol

✓ No need of separation of xylenes and benzene

Combination of methanol with petrochemical industry

Application

Introduction of methanol in aromatics complex

Methanol as raw material to produce xylenes for capacity expanding

Thanks for your attention!

VCMStudy.ir

AN

