

Axens Marketable Solution from Residue to Final Products

Alexandre Javidi

VCMStudy.ir

Synopsis

- Market driver for Residue Conversion
- H-Oil effluent upgrading possibilities (Iranian Heavy Vacuum Residue)
- Iranian Light Case Study

Iranian Market Petroleum Products

Other* = Refinery Gas, Ethane, Aviation Gasoline, Jet Gasoline, Kerosene (except Jet Kerosene), Petroleum Coke, Crude Oil etc, NGL, Non Crude (Orimulsion etc), Lubricants, Bitumen, Paraffin Wax, Other Oil, Refinery Losses

Fuel Oil Market

Fuel Oil Iranian market

50% is used for power generation

Gas is more and more used and replaces fuel oil for power generation

- Largely available
- Better for environment
- Fuel Oil that is not consumed in Iran is exported mainly to Asia

Possibility to increase profitability by making more valuable products

Focus on Marine Bunker Fuels Global Impact of 2020 Spec Change

2020: Sulfur Specification Decrease in Bunker Fuels

 2016 Decision by International Maritime Organization (IMO): global switch in 2020 to 0.5 % Sulfur (from currently 3.5 % High Sulfur Fuel Oil (HSFO))

 ECA's (Emission Controlled Areas): S specification remains at 0.1 %

In 2020, demand for HSFO will strongly decrease worldwide

Need for Residue Desulfurization and Conversion

Conversion Options Overall scheme from VR to on Spec Products

Conversion Options Overall scheme from VR to on Spec Products

Case study : Conversion Options Overall scheme

8

Conversion Options- Gasoline oriented Overall scheme

Conversion Options- Diesel oriented Overall scheme

Conversion Options- Diesel oriented- H-Oil+ Overall scheme

Vacuum Residue Properties

Feed capacity: 50 000 BPSD

VR 540+ Propeties	Iranian Heavy Blend
Spgr	1.066
Sulfur wt%	4.20
Nitrogen, ppmwt	6700
Ni+V, ppmwt	520
CCR, wt%	24.6
C7 asph. wt%	15

Iranian Heavy Blend

Conversion Options H-Oil Iranian Heavy Case

Conversion Options Overall scheme from VR to on Spec Products

Naphtha Processing

Naphtha properties on Iranian Heavy

Spgr		0.715
S	wt%	0.041
Ν	wt ppm	40
RON		48
MON		47

- Naphtha from H-Oil
 - High Nitrogen, after HDT, can be sent to Reforming
 - Paraffinic naphtha, RON to be increased in reforming
 - Reduced Yields in comparison with SR
 Naphtha:
 - > Typically, Naphtha from H-Oil < 10% of SR Naphtha

Diesel Processing

Diesel from H-Oil Analyses

GC-2D	SR Diesel	Hoil Diesel
Sulphide/Thiophene	27%	5%
BT	54%	24%
DBT	18%	58%
Ph-T, BNT	0%	12%
Total Sulphur, ppmwt	8892	1835

Basic Nitrogen	SR Diesel	Hoil Diesel
Aniline	0%	2%
Quinoleine	27%	43%
acridine	13%	11%
Total Basic	41%	56%
Total Nitrogen, ppmwt	114	1832

Diesel from H-Oil

- Refractive Sulfur,
- High Basic Nitrogen (HDS/ HDA inhibitor)
- Heavy feed : high proportion of Mono Aromatics and Condensed Aromatics

VGO Processing

VCMStudy.ir

VGO Feed Characterization

More polyaromatics in H-Oil feed

More aromatic basic nitrogen molecules in H-Oil feed

UCO Processing

UCO Processing – Fuel Oil

- Large panel of specification for Bunker Fuel or Fuel Oil
 - Sulphur
 - Density
 - Viscosity at 50C

Axens IFP Group Technologies

Sediment / Stability

Thanks to FCC Slurry, LCO dilution, UCO is compliant with Fuel Market

UCO Processing Through SDA

VGO from H-Oil and DAO from SDA

Typical Values	VGO from H-Oil	DAO from H-Oil + SDA
Sulphur, %wt	1.09	0.8 – 1.7
Nitrogen, ppwt	7200	1,600 -3,000
Metals, Ni+V, ppwt	<1	C4 Solvent <3.5
Hydrogen, %wt	11.4 - 12.2	11.0 – 12.4

UCO / Pitch As Bitumen

Main Bitumen Specification – European Market

Property	Unit	Test method	20/30	35/50	50/70	70/100	100/150	160/220
Penetration at 25°C	0,1 mm	PN-EN 1426	20+30	35+50	50+70	70 ₊100	100 +150	160+220
Softening point R&B	°C	PN-EN 1427	55+63	50+58	46+54	43+51	39+47	35+43
Flash point	°C	PN-EN ISO 2592	≥ 240	≥ 240	≥ 230	≥230	≥ 230	≥ 220
Retained penetration after hardening	%	PN-EN 1426	≥ 55	≥ 53	≥ 50	≥46	≥43	≥ 37
Change of mass after hardening ^b	% m/m	PN-EN 12607-1	≤ 0,5	≤ 0,5	≤ 0,5	≤ 0,8	≤0,8	≤ 1,0
Increase of softening point R&B after hardening- Severity 1			≤8	≤8	≤9	≤9	≤ 10	≤11
or	°C	PN-EN 1427	or	or	or	or	or	or
Increase of softening point R&B after hardening- Severity 2*			< 10	< 11	< 11	< 11	< 12	< 12

Wide range for Bitumen Specifications

+ local specifications

Example of Bitumen quality	Crude 1	Arabian / US	Canadian Heavy Crude
VR From H-Oil	Yes	Yes	Yes in blend
VR from H-Oil + SDA pitch	Yes	No	NA
After blowing treatment	Yes	yes	NA

UCO to Bitumen has been validated without dilution requirement Bitumen could be an alternate destination to increase refinery margins

IFP | Group Technologies

UCO/Pitch to Boiler

- Conventional Boilers for Steam Production
 - Limited by Feed viscosity max 40cst @ 100°C
- Mitsubishi technology solution
 - Pulverised Fire Boiler operating at high temperature
 - Steam Production and / or Electical Power
 - Advantages :
 - > Fouling Resistant
 - > Technology proven on similar services (SDA Pitch)

UCO/Pitch to Gasification

Two options:

Solid Feed

slurry of pitch + water sent to gasification requires intermediate granulation

Liquid Feed

on-line pitch or UCO product sent to gasification unit No issue for pelletisation, storage and transportation Preferred option

In both cases, several schemes possible

- Co-production of CO+H₂ and steam
- Production of electricity (IGCC): Gasification + gas turbine + steam turbine

UCO/Pitch to Gasification

- Gasification of UCO From H-Oil / pitch directly from the SDA
- MPG technology from Lurgi is the most suitable one for oil-base streams.
 - No limitations on Flash Point of Feedstock
 - Viscosity up to 300 cst
 - Long burner life time result in higher reliability and availability of plant

Final Product Slates

Product Slates on VR from Iranian Heavy

Conversion Options Feeds description

Iranian Light crude

Iranian Heavy crude

Conversion Options Feeds description

Iranian Light crude

Iranian Heavy crude

Conversion Options H-Yields on Iranian Light VR

■ UCO ■ VGO ■ Diesel ■ Naphtha ■ Light end

VGO Processing

Typical Values	VGO from H-Oil
Sulphur, %wt	0.45
Nitrogen, ppwt	1529
Metals, Ni+V, ppwt	<1
Hydrogen, %wt	11.4 - 12.2

Final Product Slates comparison

Conclusion

- H-Oil[®] is part of whole conversion scheme and each solution is unique and taylor made for a refiner
- Axens is a unique licensor with all the technology to provide the most competitive scheme for refinery market demand
- H-Oil technology permits :
 - To lower your fuel oil production
 - Reach high conversion with most competitive economics

Thank you! And see you on Axens' Blog axens.net/blog

